Volume: The Disk Method and Washer Method

Objective: Find the volume of a solid of revolution using the disk method. Find the volume of a solid of revolution using the washer method. Find the volume of a solid with known cross sections.

If a region in a plane is revolved about a line, the resulting solid is a solid of revolution, and the line is called the axis of

revolution.

The simplest solid is a disk, a rectangle revolved about an axis, and the

Volume of disk = (area of the disk)(width of the disk)
$=\pi R^{2} \mathbf{w}$ (where R is the radius of the disk)
To relate this to other solids we can approximate the solid using n such disks of width Δx, so

$$
\text { Volume of solid } \approx \pi \sum_{i=1}^{n}\left[\boldsymbol{R}\left(x_{i}\right)\right]^{2} \Delta x
$$

This approximation becomes better if we let the number of discs go to infinity
Volume of solid $=\lim _{n \rightarrow 0} \pi \sum_{i=1}^{n}\left[R\left(x_{i}\right)\right]^{2} \Delta x=\pi \int_{a}^{b}[R(x)]^{2} d x$

The Disk Method

To find the volume of a solid of revolution with the disk method, use one of the following,

$$
\begin{array}{ll}
\frac{\text { Horizontal Axis of Revolution }}{b} & \\
\text { Volume }=V=\pi \int^{b}[\boldsymbol{R}(\boldsymbol{x})]^{2} d x & \\
\text { Volume }=V=\pi \int^{d}[\boldsymbol{R}(\boldsymbol{y})]^{2} d y
\end{array}
$$

Ex: Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=\sqrt{\sin x}$ and the x-axis $(0 \leq x \leq \pi)$ about the x-axis.
Ex: Find the volume of the solid formed by revolving the region bounded by $f(x)=2-x^{2}$ and $g(x)=1$ about the line $\mathbf{y}=\mathbf{1}$.

The Washer Method

The disk method can be extended to cover solids of revolution with holes by replacing the representative disk with a representative washer.

Volume of a washer $=\pi\left(R^{2}-r^{2}\right) \mathbf{w}$
(where R is the outer radius and r is the inner radius)
Through the same methods as before we get

$$
V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x
$$

Ex: Find the volume of the solid formed by revolving the region bounded by the graphs of $y=\sqrt{x}$ and $y=\boldsymbol{x}^{2}$ about the $\mathrm{x}-$ axis.

Ex: Find the volume of the solid formed by revolving the region bounded by the graphs of $y=x^{2}+1, y=0, x=0$, and $x=1$ about the y-axis.
Ex: A manufacturer drills a hole through the center of a metal sphere of radius 5 in . The hole has radius 3 in . What is the volume of the resulting metal ring?

