
Vectors and the Geometry of Space 
Vector Space 
The 3-D coordinate system (rectangular coordinates ) is the intersection of three 
perpendicular (orthogonal) lines called coordinate axis: x, y, and z. Their intersection is 
the origin. Therefore any point in space has three coordinates (x, y, z). The coordinate 
axis breaks the space into eight octants. 

 
Recall: 

 Any point in 2-D space creates a unique rectangle with the coordinate axis  
 Every point (a, b) has a 1-to-1 correspondence with a point graphed in the plane.; 

denote R2 

Facts: 
 Any point in 3-D space creates a unique rectangular prism with the coordinate 

planes  
 Every point (a, b, c) has a 1-to-1 correspondence with a point graphed in space; 

denoted R3 
Distance Formula in 3-D 
Given any two points P1(x1, y1, z1) and P2(x2, y2, z2) the distance between them is 

𝑑 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )  = ‖𝑃 𝑃 ‖ 

 
Midpoint Formula 
The midpoint between two points P1 and P2 is 

Midpoint = , ,  

 
Ex: Find the distance and midpoint between (5, -3, 7) and (2, -1, 6) 
 
Equation of a sphere 
The standard equation of a sphere with a center of (x1, y1, z1) and a radius r is 

(𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) = 𝑟  
  
Ex: Characterize the equation  𝑥 + 𝑦 + 𝑧 + 8𝑥 + 10𝑦 − 6𝑧 + 41 = 0 



Vectors in the Plane 
Vector: A directed line segment that has magnitude (length) and direction. 
 Notation: �⃗� = 𝐯 = 〈𝑣 , 𝑣 , … , 𝑣 〉 where v1, v2, ..., vn are called the components of the vector 

or 
𝑣 = 𝒗 = 𝑃𝑄 = 〈𝑞 − 𝑝 , 𝑞 − 𝑝 , … , 𝑞 − 𝑝 〉, where P(p1, p2, ..., pn) is the initial point and  

Q(q1, q2, ..., qn) is the terminal point.       
                                                       
 
 
 
(brackets can also be used to denote vectors) 

Note: 𝑄𝑃 = 〈𝑝 − 𝑞, 𝑝 − 𝑞 , … , 𝑝 − 𝑞 〉 
zero vector: the zero vector is the unique vector denoted 0⃗ that has no magnitude and 
no direction 
magnitude of a vector: given a vector 𝑣  = 〈𝑣1, 𝑣2, … , 𝑣𝑛〉 in component form, the magnitude is 
denoted ‖𝑣‖ is given by ‖𝑣‖ = 𝑣 +  𝑣 + ⋯ + 𝑣 . Given a vector 𝑃𝑄 with initial point P(p1, 
p2, …., pn) and terminal point Q(q1, q2, …., qn) then 𝑃𝑄 =

 (𝑞 − 𝑝 ) + (𝑞 − 𝑝 ) + ⋯ +  (𝑞 − 𝑝 )  
 
Vector Operations: 
Let 𝑣 =  〈𝑣 , 𝑣 , … , 𝑣 〉 and 𝑢 = 〈𝑢 , 𝑢 , … , 𝑢 〉 and let k be a scalar 

 The vector sum of 𝑣 + 𝑢 = 〈𝑣 + 𝑢 , 𝑣 + 𝑢 , … , 𝑣 + 𝑢 〉 
 The scalar multiple of 𝑣 and k is 𝑘𝑣 = 〈𝑘𝑣 , 𝑘𝑣 , … , 𝑘𝑣 〉 
 The negative of the vector is -𝑣 = 〈−𝑣 , −𝑣 , … , −𝑣 〉,  -𝑣 goes opposite direction 
 The vector difference can be thought of in terms of addition 𝑣 − 𝑢 = 𝑣 +  −𝑢 

 
Properties of Vectors: 
Given the vectors 𝑣, 𝑤, 𝑧 all in Rn and let λ and k be scalars. 

 Commutative property for vector addition 𝑣 + 𝑤 = 𝑤 + 𝑣 
 Associative property for vector addition (𝑣 + 𝑤) + 𝑧 = 𝑣 + (𝑤 + 𝑧) 
 Existence of additive identity: 0⃗ + 𝑣 = 𝑣 + 0⃗ = 𝑣 
 Existence of additive inverse: 𝑣 + −𝑣 = −𝑣 + 𝑣 = 0⃗ 
 Scalar multiplication is commutative: λ (k 𝑣) = k (λ 𝑣) 
 Distributive properties: 𝑣 (λ +k) = (λ𝑣 + k𝑣) and λ(𝑣 + 𝑤) = (λ𝑣 + λ𝑤) 
 1*𝑣 = 𝑣 and 0*𝑤 = 0 



Unit vector: any vector with magnitude 1 is a unit vector. Given any vector 𝑤, then the unit 

vector in the same direction as 𝑤 is given by 𝑣 =
⃗

‖ ⃗‖
. 

 
Standard unit (basis) vectors: the standard unit vectors for Rn are denoted 𝑒 ,⃗ 𝑒⃗, … , 𝑒 ⃗ such 
that all components of every ek is a zero except the kth entry which is a one. In R2 〈0,1〉 or 〈1,0〉 
and in R3 i = 〈1,0,0〉 or j = 〈0,1,0〉 or k = 〈0,0,1〉 etc. 
In R3 i, j, and k help us with another notation for vectors. If 𝑣 =  〈𝑎 , 𝑎 , 𝑎 〉 then we can write  

�⃗� = 〈𝑎 , 𝑎 , 𝑎 〉 = 〈𝑎 , 0,0〉 + 〈0, 𝑎 , 0〉 + 〈0,0, 𝑎 〉 = 𝑎 〈1,0,0〉 + 𝑎 〈0,1,0〉 + 𝑎 〈0,0,1〉 = 𝑎 𝐢 + 𝑎 𝐣 + 𝑎 𝐤 
Ex: if a


= 2j and b


= 4i+7k, express the vector 2 a


 + 3b


 in terms of i, j, and k. 

 
The Dot Product of Two Vectors 
The Dot Product: 
Let 𝑣 and 𝑤 be vectors in Rn, then the dot product of 𝑣 and 𝑤 is the constant 

𝑣 ∙ 𝑤 = 𝑣 𝑤 + 𝑣 𝑤 + ⋯ + 𝑣 𝑤   
Note: the dot product is not another vector it’s a constant and the dot product is also known as 
the “inner product”. 
Properties of the Dot Product: 
Let 𝑣 , 𝑤 , and 𝑧 be vectors in Rn and λ be scalar 

 𝑣 ∙ 𝑤 = 𝑤 ∙ 𝑣 (commutative) 
 𝑣 ∙ (𝑤 + 𝑧) = 𝑣 ∙ 𝑤 + 𝑣 ∙ 𝑧 (distributive) 
 𝜆(𝑣 ∙ 𝑤) = (𝜆�⃗�) ∙ 𝑤 = 𝑣 ∙ (𝜆𝑤) 
 0⃗ ∙ 𝑤 = 𝑤 ∙ 0⃗ = 0 
 𝑣 ∙ 𝑣 = ‖𝑣‖  

 
Ex: Given 𝑣 = 〈1, −3〉, 𝑤 = 〈−2,5〉, 𝑧 = 〈1, −3,5,7,9〉, and 𝑏 = 〈2, −1, −2, −3,6〉 find 𝑣 ∙ 𝑤, 𝑤 ∙

𝑣, 𝑧 ∙ 𝑏, 𝑧 ∙ 𝑣, and 𝑣 ∙ 𝑣 
Angle Between Vectors: 

If ϴ is an angle between two nonzero vectors 𝑣 and 𝑤 then cos 𝛳 =
⃗∙ ⃗

‖ ⃗‖‖ ⃗‖
 

 
Two vectors are orthogonal (perpendicular) iff 𝑣 ∙ 𝑤 = 0 (remember cos 𝜋/2 = 0) 
 
Ex: Find the angle between 〈3, −1,2〉 and 〈1, −1, −2〉 
 
 
 
 
 
 
 
 
 
 



Vector Projections: 
Let 𝑢 and 𝑣 be nonzero vectors. Moreover let 𝑢 = 𝑤⃗ + 𝑤⃗, where 𝑤⃗ is parallel to 𝑣, and 𝑤⃗ 
is orthogonal to 𝑣 

1. 𝑤⃗ is called the projection of u onto v or the vector component of u along v, and is 
denoted by 𝑤⃗ = projvu 

2. 𝑤⃗ = 𝑢 − 𝑤⃗ is called the vector component of u orthogonal to v. 
To project a vector u onto a vector v we drop a 
perpendicular from the terminal side of u onto 
the vector w1 containing vector v then the 
vector with the same initial point as u and v to 
the point of intersection of v and w1 is the 
projection of u onto v 
 

(from here on out vectors will be notated as bolded lower case letter instead of 𝑣) 
 

Formula to find the Vector Projection: 
Let v and w be vectors in Rn that have the same initial point. 

𝑝𝑟𝑜𝑗 𝑣 =
𝑣 ∙ 𝑤

‖𝑤‖
𝑤 

 
Ex. Given v = [3, -2, 1] and w = [4, 1, -5] find projvw and projwv 
 
The Cross Product of Two Vectors in Space 
The Cross Product 
Let v and w be vectors in R3, then the cross product of v and w is 

v × w = [v2w3 – v3w2, v3w1 – v1w3, v1w2 – v2w1] 
Note: the cross product is another vector, the best way to remember the cross product is 
through determinants, and the cross product is only defined when vectors are in 3-D. 
 
 
 
 
 
 
 
 
 
 
 
Ex: If u = [1, -2, 1] and v = [3, 1, -2] find u × v, v × u, and v × v. 
 
 
 



Algebraic Properties of the Cross Product: 
Let u, v and w be vectors in space, and let c be a scalar 

 u × v = -(v × u) 
 u × (v + w) = (u × v) + (u × v) 
 c(u × v) = (cu) × v  = u × (cv) 
 u × 0 = 0 × u = 0 
 u × u = 0 
 u ∙ (v × w) = (u × v) ∙ w   (triple scalar product) 

 
Since the cross product is another vector we need to find the magnitude and direction of the 
cross product.  
 
Geometric Properties of the Cross Product 
Let u and v be nonzero vectors in space and let θ be the angle between u and v 

 u x v is orthogonal to both u and v (right hand rule) 
 ‖𝑢 × 𝑣‖ = ‖𝑢‖‖𝑣‖ sin 𝜃 
 u x v = 0 iff u and v are scalar multiples of each other  
 u x v = 0 iff u and v are parallel 
 ‖𝑢 × 𝑣‖ = area of the parallelogram having u and v as adjacent sides  

 
 
 
 
 
 
Triple Scalar Product: 
For vectors u, v, and w the triple scalar product is 
 
 
 
 
Geometrically the triple scalar product is the volume of a parallelepiped that u, v, and w form in 
space as long as they all lie on different planes  
 
If the triple scalar product = 0 then two or more of the vectors are on the same plane 
(coplanar).  
 
Ex: Find the volume of the parallelepiped having u = [3, -5, 1] v = [0, 2, -2] and 
 w = [3, 1, 1] as adjacent edges.  
 
 
 
 



Lines and Planes in Space: 
Lines in Space: To find the equation of a line in 2-D we need a point on the line and the  
slope of the line. Similarly to find the equation of a line in space we need a point on the 
line and the direction of the line for this we can use a vector. 
 
Given a point P(x1, y1, z1) on a line and a vector v = [a,b,c] parallel to the line. The vector v 
is the direction vector for the line and a,b, and c are direction numbers. We can say the 
line consists of all points Q(x,y,z) for which 𝑃𝑄 in parallel to v (a scalar multiple of v), 
therefore 𝑃𝑄 = 𝑡v Where t is a real number. 

𝑃𝑄 =  〈𝑥 − 𝑥 , 𝑦 −  𝑦 , 𝑧 − 𝑧 〉 = 〈𝑎𝑡, 𝑏𝑡, 𝑐𝑡〉 = 𝑡v 
 

Parametric Equations of a Line in Space 
A line L parallel to the vector v = [a,b,c] and passing through the point P[x1, y1, z1] is 
represented by the parametric equations 

𝑥 = 𝑥 + 𝑎𝑡             𝑦 =  𝑦 + 𝑏𝑡           𝑧 = 𝑧 + 𝑐𝑡 
Or with the vector parameterization 

r(𝑡) = 〈𝑥 , 𝑦 , 𝑧 〉 + 𝑡〈𝑎, 𝑏, 𝑐〉 
If we eliminate the parameter t we can obtain the symmetric equations 

𝑥 − 𝑥

𝑎
=

𝑦 − 𝑦

𝑏
=

𝑧 − 𝑧

𝑐
 

Ex: Find the parametric and symmetric equations of the line L that passes though the 
point (2, 1, -3) and is parallel to v = [-1, -5, 4] 
Ex: Find a set of parametric equations of the line that passes through the points (-3, 1, -2) 
and (5, 4, -6).  
 
Planes in Space: Like a line in space a plane in space can be obtained from a point in the 
plane and a vector normal (perpendicular) to the plane. 
If a plane contains point P(x1, y1, z1) having a nonzero normal vector n = [a,b,c], this plane 
consists of all point Q(x,y,z) for which 𝑃𝑄 is orthogonal to n. This can be found with a dot 
product. 
 
 
 
 
 
Standard Equation of a Plane in Space 
The plane containing the point (x1, y1, z1) and having normal vector n = [a, b, c,] can be 
represented by the standard form of the equation of the plane  

𝑎(𝑥 − 𝑥 ) + 𝑏(𝑦 − 𝑦 ) + 𝑐(𝑧 − 𝑧 ) = 0 
 
Since x1, y1, and z1, are constants the equation can be rewritten as 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 this is 
known as the general form. 
 



Ex: Find the equation of the plane through point (1, 2, 3) and with normal vector 
 n = [-2, 5, -6] 
Ex: Find the equation of the plane that passes through (-1, 2, 4), (1, 3, -1), and (2, -3, 1). 
 
Facts: 

 Two planes are parallel iff there normal vectors are scalar vectors of each other 
 Two planes intersect in a line  

 The angle between two planes is cos 𝜃 =
 ⃗∙ ⃗

‖ ⃗‖‖ ⃗‖
 

 Two planes are orthogonal iff n1 ∙ n2 = 0  
 
Ex: Find the angle between the two planes 

𝑥 − 2𝑦 + 𝑧 = 0 
2𝑥 + 3𝑦 − 2𝑧 = 0 

      and find the parametric equations of the line of intersection.  
 
 
Surfaces in Space: 
In previous sections we talked about spheres and planes a third type of surface in space is 
called a cylindrical surface. 
 
Cylindrical Surface: Let C be a curve in a plane and let L be a line not in a parallel plane. 
The set of all lines parallel to L and interesting C is called a cylinder. C is called the  
generating curve (directrix) of the cylinder, and parallel lines are called rulings. 
 
In geometry a cylinder refers to a right circular cylinder but the above definition refer to 
many types of cylinders. 
 
Equations of Cylinders: The equation of a cylinder whose rulings are parallel to one of the 
coordinate axes contains only the variables corresponding to the other two axes.  

 
 
 



Quadric Surface: quadric surfaces are the 3-D counterparts of the conic sections in the 
plane. The equation of a quadric surface is a second degree equation in three variables. 
The general form of the equation of a quadric surface is 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷𝑥𝑦 + 𝐸𝑥𝑧 + 𝐹𝑦𝑧 + 𝐺𝑥 + 𝐻𝑦 + 𝐼𝑧 + 𝐽 = 0 
 
The trace of a surface is the intersection of the surface with a plane. 
 

 
 



 
Ex: Classify the surface 

a. 4𝑥 − 3𝑦 + 12𝑧 + 12 = 0 
b. 16𝑥 − 𝑦 + 16𝑧 = 4 
c. 3𝑧 + 𝑦 = 𝑥  
d. 9𝑥 + 𝑦 − 9𝑧 − 54𝑥 − 4𝑦 − 54𝑧 + 4 = 0 

 



Cylindrical and Spherical Coordinates: 
Review: Polar Coordinates 
Polar coordinates (r, θ) of a point (x, y) in the Cartesian plane are another way to plot a 
graph. The r represents the distance you move away from the origin and θ represents an 
angle in standard position.  
 
 
 
 
 
 
 
 
 
 
Ex: Convert (3, -3) to polar coordinates 
 

Ex: Convert 2,  to rectangular coordinates 

 
To convert from polar to rectangular 

x = rcosθ 
y = rsinθ 

To convert from rectangular to polar 
  𝑟 = 𝑥 + 𝑦  
  ϴ = arctan(y/x) 
 
Cylindrical Coordinates: the cylindrical coordinates (r, θ, z) for a point (x, y, z) in the 
rectangular coordinate system are the point (r, θ, 0) where (r, θ) represents the polar 
coordinates of (x,y) and z stays the same.  
 
Ex: Convert from cylindrical to rectangular 
         (2, π/3, -8) 
 
Ex: Find an equation in cylindrical coordinates 
representing the equation given in rectangular 
coordinates:  

a. 𝑥 + 𝑦 = 9𝑧  
b. 𝑦 = 𝑥 

 
Ex: Find an equation in rectangular coordinates 
representing the equation given in cylindrical 
coordinates 𝑟 =  
 



Spherical Coordinates: the spherical coordinates (ρ, θ, φ) for a point (x, y, z) in the 
rectangular coordinate system is the point (ρ, θ, φ) where 

 ρ represents the distance from the origin to the point in space 
 θ represents the angle in the plane from the positive x – axis to the point (x, y, 0)  
 • φ represents the angle from positive z-axis to the line segment connecting the origin 

to the point (x, y, z), 0 ≤ φ ≤ π 
 
To convert from spherical to rectangular 

x = ρsinφcosθ 
y = ρsinφsinθ 
z = ρcosφ 

 
To convert from rectangular to spherical:  
 𝜌 = 𝑥 + 𝑦 + 𝑧  
 tanθ = y/x 

cosφ = z/ρ 
 
To convert from spherical to cylindrical (r ≥ 0) 
 𝑟 = 𝜌 𝑠𝑖𝑛 𝜃 
 𝜃 = 𝜃 
 𝑧 = 𝑝 cos ∅ 
 
Ex: Find the equation in spherical for the equation in rectangular coordinates: 𝑥 + 𝑦 = 𝑧  
 


