# Vectors and the Geometry of Space

# Vector Space

The 3-D coordinate system (rectangular coordinates ) is the intersection of three perpendicular (orthogonal) lines called coordinate axis: x, y, and z. Their intersection is the origin. Therefore any point in space has three coordinates (x, y, z). The coordinate axis breaks the space into eight octants.



Recall:

- Any point in 2-D space creates a unique rectangle with the coordinate axis
- Every point (a, b) has a 1-to-1 correspondence with a point graphed in the plane.; denote R<sup>2</sup>

Facts:

- Any point in 3-D space creates a unique rectangular prism with the coordinate planes
- Every point (a, b, c) has a 1-to-1 correspondence with a point graphed in space; denoted R<sup>3</sup>

**Distance Formula in 3-D** Given any two points P<sub>1</sub>(x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) and P<sub>2</sub>(x<sub>2</sub>, y<sub>2</sub>, z<sub>2</sub>) the distance between them is  $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} = \|\overline{P_1 P_2}\|$ 

### **Midpoint Formula**

The midpoint between two points P1 and P2 is

Midpoint =  $\left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}, \frac{z_2 + z_1}{2}\right)$ 

**Ex:** Find the distance and midpoint between (5, -3, 7) and (2, -1, 6)

### **Equation of a sphere**

The standard equation of a sphere with a center of  $(x_1, y_1, z_1)$  and a radius r is  $(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 = r^2$ 

**Ex:** Characterize the equation  $x^{2} + y^{2} + z^{2} + 8x + 10y - 6z + 41 = 0$ 

# Vectors in the Plane

**Vector**: A directed line segment that has magnitude (length) and direction. Notation:  $\vec{v} = \mathbf{v} = \langle v_1, v_2, ..., v_n \rangle$  where  $v_1, v_2, ..., v_n$  are called the components of the vector Or  $\vec{v} = \mathbf{v} = \overrightarrow{PQ} = \langle q_1 - p_1, q_2 - p_2, ..., q_n - p_n \rangle$ , where P(p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>n</sub>) is the initial point and Q(q<sub>1</sub>, q<sub>2</sub>, ..., q<sub>n</sub>) is the terminal point. (brackets can also be used to denote vectors)

Note:  $\overrightarrow{QP} = \langle p_1 - q, p_2 - q_2, \dots, p_n - q_n \rangle$ 

<u>zero vector</u>: the zero vector is the unique vector denoted  $\vec{0}$  that has no magnitude and no direction

**<u>magnitude of a vector</u>**: given a vector  $\vec{v} = \langle v_1, v_2, ..., v_n \rangle$  in component form, the magnitude is denoted  $\|\vec{v}\|$  is given by  $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$ . Given a vector  $\overrightarrow{PQ}$  with initial point P(p\_1, p\_2, ..., p\_n) and terminal point Q(q\_1, q\_2, ..., q\_n) then  $\|\overrightarrow{PQ}\| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$ 

## Vector Operations:

Let  $\vec{v} = \langle v_1, v_2, ..., v_n \rangle$  and  $\vec{u} = \langle u_1, u_2, ..., u_n \rangle$  and let k be a scalar

- The vector sum of  $\vec{v} + \vec{u} = \langle v_1 + u_1, v_2 + u_2, \dots, v_n + u_n \rangle$
- The scalar multiple of  $\vec{v}$  and k is  $k\vec{v} = \langle kv_1, kv_2, ..., kv_n \rangle$
- The negative of the vector is  $\vec{v} = \langle -v_1, -v_2, ..., -v_n \rangle$ ,  $\vec{v}$  goes opposite direction
- The vector difference can be thought of in terms of addition  $\vec{v} \vec{u} = \vec{v} + -\vec{u}$



# **Properties of Vectors:**

Given the vectors  $\vec{v}$ ,  $\vec{w}$ ,  $\vec{z}$  all in R<sup>n</sup> and let  $\lambda$  and k be scalars.

- Commutative property for vector addition  $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- Associative property for vector addition  $(\vec{v} + \vec{w}) + \vec{z} = \vec{v} + (\vec{w} + \vec{z})$
- Existence of additive identity:  $\vec{0} + \vec{v} = \vec{v} + \vec{0} = \vec{v}$
- Existence of additive inverse:  $\vec{v} + -\vec{v} = -\vec{v} + \vec{v} = \vec{0}$
- Scalar multiplication is commutative:  $\lambda$  (k  $\vec{v}$ ) = k ( $\lambda \vec{v}$ )
- Distributive properties:  $\vec{v} (\lambda + k) = (\lambda \vec{v} + k \vec{v})$  and  $\lambda (\vec{v} + \vec{w}) = (\lambda \vec{v} + \lambda \vec{w})$
- $1^*\vec{v} = \vec{v}$  and  $0^*\vec{w} = 0$

<u>Unit vector</u>: any vector with magnitude 1 is a unit vector. Given any vector  $\vec{w}$ , then the unit vector in the same direction as  $\vec{w}$  is given by  $\vec{v} = \frac{\vec{w}}{\|\vec{w}\|}$ .

<u>Standard unit (basis) vectors</u>: the standard unit vectors for R<sup>n</sup> are denoted  $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$  such that all components of every  $e_k$  is a zero except the k<sup>th</sup> entry which is a one. In R<sup>2</sup> (0,1) or (1,0) and in R<sup>3</sup> i = (1,0,0) or j = (0,1,0) or k = (0,0,1) etc.

In R<sup>3</sup> i, j, and k help us with another notation for vectors. If  $\vec{v} = \langle a_1, a_2, a_3 \rangle$  then we can write  $\vec{v} = \langle a_1, a_2, a_3 \rangle = \langle a_1, 0, 0 \rangle + \langle 0, a_2, 0 \rangle + \langle 0, 0, a_3 \rangle = a_1 \langle 1, 0, 0 \rangle + a_2 \langle 0, 1, 0 \rangle + a_3 \langle 0, 0, 1 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ **Ex:** if  $\vec{a} = 2\mathbf{j}$  and  $\vec{b} = 4\mathbf{i}+7\mathbf{k}$ , express the vector  $2\vec{a} + 3\vec{b}$  in terms of i, j, and k.

#### The Dot Product of Two Vectors

#### The Dot Product:

Let  $\vec{v}$  and  $\vec{w}$  be vectors in R<sup>n</sup>, then the dot product of  $\vec{v}$  and  $\vec{w}$  is the constant

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$$

Note: the dot product is <u>not</u> another vector it's a constant and the dot product is also known as the "inner product".

#### Properties of the Dot Product:

Let  $\vec{v}$  ,  $\vec{w}$  , and  $\vec{z}$  be vectors in  $R^n$  and  $\lambda$  be scalar

- $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$  (commutative)
- $\vec{v} \cdot (\vec{w} + \vec{z}) = \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{z}$  (distributive)
- $\lambda(\vec{v}\cdot\vec{w}) = (\lambda\vec{v})\cdot\vec{w} = \vec{v}\cdot(\lambda\vec{w})$
- $\vec{0} \cdot \vec{w} = \vec{w} \cdot \vec{0} = 0$
- $\vec{v} \cdot \vec{v} = \|\vec{v}\|^2$

**Ex:** Given  $\vec{v} = \langle 1, -3 \rangle$ ,  $\vec{w} = \langle -2, 5 \rangle$ ,  $\vec{z} = \langle 1, -3, 5, 7, 9 \rangle$ , and  $\vec{b} = \langle 2, -1, -2, -3, 6 \rangle$  find  $\vec{v} \cdot \vec{w}$ ,  $\vec{w} \cdot \vec{v}$ ,  $\vec{z} \cdot \vec{b}$ ,  $\vec{z} \cdot \vec{v}$ , and  $\vec{v} \cdot \vec{v}$ 

#### Angle Between Vectors:

If  $\Theta$  is an angle between two nonzero vectors  $\vec{v}$  and  $\vec{w}$  then  $\cos \Theta = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}$ 

Two vectors are orthogonal (perpendicular) iff  $\vec{v} \cdot \vec{w} = 0$  (remember  $\cos \pi/2 = 0$ )

**Ex:** Find the angle between (3, -1, 2) and (1, -1, -2)

### Vector Projections:

Let  $\vec{u}$  and  $\vec{v}$  be nonzero vectors. Moreover let  $\vec{u} = \vec{w_1} + \vec{w_2}$ , where  $\vec{w_1}$  is parallel to  $\vec{v}$ , and  $\vec{w_2}$  is orthogonal to  $\vec{v}$ 

- 1.  $\overrightarrow{w_1}$  is called the **projection of u onto v** or the **vector component** of **u** along **v**, and is denoted by  $\overrightarrow{w_1} = \text{proj}_v u$
- 2.  $\overrightarrow{w_2} = \overrightarrow{u} \overrightarrow{w_1}$  is called the vector component of u orthogonal to v.



To project a vector  $\mathbf{u}$  onto a vector  $\mathbf{v}$  we drop a perpendicular from the terminal side of  $\mathbf{u}$  onto the vector  $\mathbf{w}_1$  containing vector  $\mathbf{v}$  then the vector with the same initial point as  $\mathbf{u}$  and  $\mathbf{v}$  to the point of intersection of  $\mathbf{v}$  and  $\mathbf{w}_1$  is the projection of  $\mathbf{u}$  onto  $\mathbf{v}$ 



(from here on out vectors will be notated as bolded lower case letter instead of  $\vec{v}$ )

## Formula to find the Vector Projection:

Let  $\mathbf{v}$  and  $\mathbf{w}$  be vectors in  $\mathbb{R}^n$  that have the same initial point.

$$proj_w v = \left(\frac{v \cdot w}{\|w\|^2}\right) w$$

**Ex.** Given  $\mathbf{v} = [3, -2, 1]$  and  $\mathbf{w} = [4, 1, -5]$  find  $\text{proj}_{v}\mathbf{w}$  and  $\text{proj}_{w}\mathbf{v}$ 

### The Cross Product of Two Vectors in Space

#### The Cross Product

Let **v** and **w** be vectors in  $R^3$ , then the cross product of **v** and **w** is

 $\mathbf{v} \times \mathbf{w} = [v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1]$ 

Note: the cross product is another vector, the best way to remember the cross product is through determinants, and the cross product is only defined when vectors are in 3-D.



**Ex:** If **u** = [1, -2, 1] and **v** = [3, 1, -2] find **u** × **v**, **v** × **u**, and **v** × **v**.

# Algebraic Properties of the Cross Product:

Let **u**, **v** and **w** be vectors in space, and let c be a scalar

- $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
- $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{v})$
- $c(\mathbf{u} \times \mathbf{v}) = (c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v})$
- $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
- **u** × **u** = 0
- $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$  (triple scalar product)

Since the cross product is another vector we need to find the magnitude and direction of the cross product.

# **Geometric Properties of the Cross Product**

Let  $\boldsymbol{u}$  and  $\boldsymbol{v}$  be nonzero vectors in space and let  $\boldsymbol{\theta}$  be the angle between  $\boldsymbol{u}$  and  $\boldsymbol{v}$ 

- **u** x **v** is orthogonal to both **u** and **v** (*right hand rule*)
- $||u \times v|| = ||u|| ||v|| \sin \theta$
- **u** x **v** = 0 iff **u** and **v** are scalar multiples of each other
- **u** x **v** = 0 iff **u** and **v** are parallel
- $||u \times v||$  = area of the parallelogram having **u** and **v** as adjacent sides



# Triple Scalar Product:

For vectors **u**, **v**, and **w** the triple scalar product is

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

(Its easier to solve for this using determinants)

Geometrically the triple scalar product is the volume of a parallelepiped that u, v, and w form in space as long as they all lie on different planes

If the triple scalar product = 0 then two or more of the vectors are on the same plane (coplanar).

**Ex:** Find the volume of the parallelepiped having  $\mathbf{u} = [3, -5, 1] \mathbf{v} = [0, 2, -2]$  and  $\mathbf{w} = [3, 1, 1]$  as adjacent edges.

## Lines and Planes in Space:

Lines in Space: To find the equation of a line in 2-D we need a point on the line and the slope of the line. Similarly to find the equation of a line in space we need a point on the line and the direction of the line for this we can use a vector.

Given a point P(x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) on a line and a vector  $\mathbf{v} = [a,b,c]$  parallel to the line. The vector  $\mathbf{v}$  is the direction vector for the line and a,b, and c are direction numbers. We can say the line consists of all points Q(x,y,z) for which  $\overrightarrow{PQ}$  in parallel to v (a scalar multiple of v), therefore  $\overrightarrow{PQ} = t\mathbf{v}$  Where t is a real number.

$$\overrightarrow{PQ} = \langle x - x_1, y - y_1, z - z_1 \rangle = \langle at, bt, ct \rangle = t\mathbf{v}$$

## Parametric Equations of a Line in Space

A line L parallel to the vector v = [a,b,c] and passing through the point  $P[x_1, y_1, z_1]$  is represented by the parametric equations

 $x = x_1 + at$   $y = y_1 + bt$   $z = z_1 + ct$ Or with the vector parameterization

$$\mathbf{r}(t) = \langle x_1, y_1, z_1 \rangle + t \langle a, b, c \rangle$$

If we eliminate the parameter t we can obtain the symmetric equations

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

**Ex:** Find the parametric and symmetric equations of the line L that passes though the point (2, 1, -3) and is parallel to  $\mathbf{v} = [-1, -5, 4]$ 

**Ex:** Find a set of parametric equations of the line that passes through the points (-3, 1, -2) and (5, 4, -6).

**Planes in Space:** Like a line in space a plane in space can be obtained from a point in the plane and a vector normal (perpendicular) to the plane.

If a plane contains point P(x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) having a nonzero normal vector n = [a,b,c], this plane consists of all point Q(x,y,z) for which  $\overrightarrow{PQ}$  is orthogonal to n. This can be found with a dot product.

$$n \bullet \overline{PQ} = 0$$
  
[a,b,c] • [x - x<sub>1</sub>, y - y<sub>1</sub>, z - z<sub>1</sub>] = 0  
$$a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$$

# Standard Equation of a Plane in Space

The plane containing the point (x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>) and having normal vector **n** = [a, b, c,] can be represented by the **standard form** of the equation of the plane  $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$ 

Since  $x_1$ ,  $y_1$ , and  $z_1$ , are constants the equation can be rewritten as ax + by + cz + d = 0 this is known as the **general form**.

**Ex:** Find the equation of the plane through point (1, 2, 3) and with normal vector n = [-2, 5, -6]

Ex: Find the equation of the plane that passes through (-1, 2, 4), (1, 3, -1), and (2, -3, 1).

Facts:

- Two planes are parallel iff there normal vectors are scalar vectors of each other
- Two planes intersect in a line
- The angle between two planes is  $\cos \theta = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\|\overrightarrow{n_1}\| \|\overrightarrow{n_2}\|}$
- Two planes are orthogonal iff  $n_1 \cdot n_2 = 0$

Ex: Find the angle between the two planes

$$x - 2y + z = 0$$
$$2x + 3y - 2z = 0$$

and find the parametric equations of the line of intersection.

# Surfaces in Space:

In previous sections we talked about spheres and planes a third type of surface in space is called a cylindrical surface.

**Cylindrical Surface:** Let C be a curve in a plane and let L be a line not in a parallel plane. The set of all lines parallel to L and interesting C is called a **cylinder**. C is called the **generating curve (***directrix***)** of the cylinder, and parallel lines are called **rulings**.

In geometry a cylinder refers to a right circular cylinder but the above definition refer to many types of cylinders.

**Equations of Cylinders:** The equation of a cylinder whose rulings are parallel to one of the coordinate axes contains only the variables corresponding to the other two axes.



**Quadric Surface:** quadric surfaces are the 3-D counterparts of the conic sections in the plane. The equation of a quadric surface is a second degree equation in three variables. The general form of the equation of a quadric surface is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

The **trace of a surface** is the intersection of the surface with a plane.





Ex: Classify the surface

- **a.**  $4x^2 3y^2 + 12z^2 + 12 = 0$
- **b.**  $16x^2 y^2 + 16z^2 = 4$ **c.**  $3z + y^2 = x^2$
- **d.**  $9x^2 + y^2 9z^2 54x 4y 54z + 4 = 0$

## **Cylindrical and Spherical Coordinates:**

### **Review: Polar Coordinates**

Polar coordinates  $(r, \theta)$  of a point (x, y) in the Cartesian plane are another way to plot a graph. The r represents the distance you move away from the origin and  $\theta$  represents an angle in standard position.  $(r, \theta)$ 



Ex: Convert (3, -3) to polar coordinates

**Ex:** Convert  $\left(2, \frac{2\pi}{3}\right)$  to rectangular coordinates

To convert from polar to rectangular

 $x = r\cos\theta$ y = rsin $\theta$ To convert from rectangular to polar  $r^2 = x^2 + y^2$  $\Theta = \arctan(y/x)$ 

**<u>Cylindrical Coordinates:</u>** the cylindrical coordinates  $(r, \theta, z)$  for a point (x, y, z) in the rectangular coordinate system are the point  $(r, \theta, 0)$  where  $(r, \theta)$  represents the polar coordinates of (x,y) and z stays the same. Cylindrical coordinates:

**Ex:** Convert from cylindrical to rectangular  $(2, \pi/3, -8)$ 

**Ex:** Find an equation in cylindrical coordinates representing the equation given in rectangular coordinates:

a. 
$$x^2 + y^2 = 9z^2$$
  
b.  $y^2 = x$ 

Ex: Find an equation in rectangular coordinates representing the equation given in cylindrical coordinates  $r = \frac{z}{2}$ 



**Spherical Coordinates:** the spherical coordinates ( $\rho$ ,  $\theta$ ,  $\phi$ ) for a point (x, y, z) in the rectangular coordinate system is the point ( $\rho$ ,  $\theta$ ,  $\phi$ ) where

- $\rho$  represents the distance from the origin to the point in space
- $\theta$  represents the angle in the plane from the positive x axis to the point (x, y, 0)
- $\phi$  represents the angle from positive z-axis to the line segment connecting the origin to the point (x, y, z),  $0 \le \phi \le \pi$

To convert from spherical to rectangular

 $x = \rho sin\phi cos\theta$  $y = \rho sin\phi sin\theta$  $z = \rho cos\phi$ 

To convert from rectangular to spherical:

$$ho = \sqrt{x^2 + y^2 + tan \theta}$$
  
tan $\theta$  = y/x  
cos $\phi$  = z/ $\rho$ 

To convert from spherical to cylindrical ( $r \ge 0$ )

 $z^2$ 

$$r^{2} = \rho^{2} sin^{2} \theta$$
$$\theta = \theta$$
$$z = n \cos \theta$$

**Ex:** Find the equation in spherical for the equation in rectangular coordinates:  $x^2 + y^2 = z^2$ 

