Vectors and the Geometry of Space

Vector Space

The 3-D coordinate system (rectangular coordinates) is the intersection of three perpendicular (orthogonal) lines called coordinate axis: x, y, and z. Their intersection is the origin. Therefore any point in space has three coordinates (x, y, z). The coordinate axis breaks the space into eight octants.

Recall:

- Any point in 2-D space creates a unique rectangle with the coordinate axis
- Every point (a, b) has a 1-to-1 correspondence with a point graphed in the plane.; denote R^{2}
Facts:
- Any point in 3-D space creates a unique rectangular prism with the coordinate planes
- Every point (a, b, c) has a 1-to-1 correspondence with a point graphed in space; denoted R^{3}

Distance Formula in 3-D

Given any two points $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ the distance between them is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\left\|\overline{P_{1} P_{2}}\right\|
$$

Midpoint Formula

The midpoint between two points P_{1} and P_{2} is

$$
\text { Midpoint }=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}, \frac{z_{2}+z_{1}}{2}\right)
$$

Ex: Find the distance and midpoint between $(5,-3,7)$ and $(2,-1,6)$

Equation of a sphere

The standard equation of a sphere with a center of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and a radius r is

$$
\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}=r^{2}
$$

Ex: Characterize the equation $x^{2}+y^{2}+z^{2}+8 x+10 y-6 z+41=0$

Vector: A directed line segment that has magnitude (length) and direction.
Notation: $\vec{v}=\mathbf{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ where $\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}$ are called the components of the vector or
$\vec{v}=\boldsymbol{v}=\overrightarrow{P Q}=\left\langle q_{1}-p_{1}, q_{2}-p_{2}, \ldots, q_{n}-p_{n}\right\rangle$, where $\mathrm{P}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{n}\right)$ is the initial point and $\mathrm{Q}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{n}\right)$ is the terminal point.

(brackets can also be used to denote vectors)
Note: $\overrightarrow{Q P}=\left\langle p_{1}-q, p_{2}-q_{2}, \ldots, p_{n}-q_{n}\right\rangle$
zero vector: the zero vector is the unique vector denoted $\overrightarrow{0}$ that has no magnitude and no direction
magnitude of a vector: given a vector $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ in component form, the magnitude is denoted $\|\vec{v}\|$ is given by $\|\vec{v}\|=\sqrt{v_{1}{ }^{2}+v_{2}{ }^{2}+\cdots+v_{n}{ }^{2}}$. Given a vector $\overrightarrow{P Q}$ with initial point $\mathrm{P}\left(\mathrm{p}_{1}\right.$, $\left.\mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right)$ and terminal point $\mathrm{Q}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots ., \mathrm{q}_{\mathrm{n}}\right)$ then $\|\overrightarrow{P Q}\|=$
$\sqrt{\left(q_{1}-p_{1}\right)^{2}+\left(q_{2}-p_{2}\right)^{2}+\cdots+\left(q_{n}-p_{n}\right)^{2}}$

Vector Operations:

Let $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ and $\vec{u}=\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle$ and let k be a scalar

- The vector sum of $\vec{v}+\vec{u}=\left\langle v_{1}+u_{1}, v_{2}+u_{2}, \ldots, v_{n}+u_{n}\right\rangle$
- The scalar multiple of \vec{v} and k is $k \vec{v}=\left\langle k v_{1}, k v_{2}, \ldots, k v_{n}\right\rangle$
- The negative of the vector is $-\vec{v}=\left\langle-v_{1},-v_{2}, \ldots,-v_{n}\right\rangle,-\vec{v}$ goes opposite direction
- The vector difference can be thought of in terms of addition $\vec{v}-\vec{u}=\vec{v}+-\vec{u}$

Properties of Vectors:

Given the vectors $\vec{v}, \vec{w}, \vec{z}$ all in R^{n} and let λ and k be scalars.

- Commutative property for vector addition $\vec{v}+\vec{w}=\vec{w}+\vec{v}$
- Associative property for vector addition $(\vec{v}+\vec{w})+\vec{z}=\vec{v}+(\vec{w}+\vec{z})$
- Existence of additive identity: $\overrightarrow{0}+\vec{v}=\vec{v}+\overrightarrow{0}=\vec{v}$
- Existence of additive inverse: $\vec{v}+-\vec{v}=-\vec{v}+\vec{v}=\overrightarrow{0}$
- Scalar multiplication is commutative: $\lambda(\mathrm{k} \vec{v})=\mathrm{k}(\lambda \vec{v})$
- Distributive properties: $\vec{v}(\lambda+\mathrm{k})=(\lambda \vec{v}+\mathrm{k} \vec{v})$ and $\lambda(\vec{v}+\vec{w})=(\lambda \vec{v}+\lambda \vec{w})$
- $1^{*} \vec{v}=\vec{v}$ and $0^{*} \vec{w}=0$

Unit vector: any vector with magnitude 1 is a unit vector. Given any vector \vec{w}, then the unit vector in the same direction as \vec{w} is given by $\vec{v}=\frac{\vec{w}}{\|\vec{w}\|}$.

Standard unit (basis) vectors: the standard unit vectors for R^{n} are denoted $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \ldots, \overrightarrow{e_{n}}$ such that all components of every e_{k} is a zero except the $k^{\text {th }}$ entry which is a one. In $R^{2}\langle 0,1\rangle$ or $\langle 1,0\rangle$ and in $R^{3} \mathbf{i}=\langle 1,0,0\rangle$ or $\mathbf{j}=\langle 0,1,0\rangle$ or $\mathbf{k}=\langle 0,0,1\rangle$ etc.
In $\mathrm{R}^{3} \mathrm{i}, \mathrm{j}$, and k help us with another notation for vectors. If $\vec{v}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ then we can write
$\vec{v}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\left\langle a_{1}, 0,0\right\rangle+\left\langle 0, a_{2}, 0\right\rangle+\left\langle 0,0, a_{3}\right\rangle=a_{1}\langle 1,0,0\rangle+a_{2}\langle 0,1,0\rangle+a_{3}\langle 0,0,1\rangle=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ Ex: if $\vec{a}=2 \mathrm{j}$ and $\vec{b}=4 \mathrm{i}+7 \mathrm{k}$, express the vector $2 \vec{a}+3 \vec{b}$ in terms of i, j, and k .

The Dot Product of Two Vectors

The Dot Product:
Let \vec{v} and \vec{w} be vectors in R^{n}, then the dot product of \vec{v} and \vec{w} is the constant

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}
$$

Note: the dot product is not another vector it's a constant and the dot product is also known as the "inner product".

Properties of the Dot Product:

Let \vec{v}, \vec{w}, and \vec{z} be vectors in R^{n} and λ be scalar

- $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$ (commutative)
- $\vec{v} \cdot(\vec{w}+\vec{z})=\vec{v} \cdot \vec{w}+\vec{v} \cdot \vec{z}$ (distributive)
- $\lambda(\vec{v} \cdot \vec{w})=(\lambda \vec{v}) \cdot \vec{w}=\vec{v} \cdot(\lambda \vec{w})$
- $\overrightarrow{0} \cdot \vec{w}=\vec{w} \cdot \overrightarrow{0}=0$
- $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$

Ex: Given $\vec{v}=\langle 1,-3\rangle, \vec{w}=\langle-2,5\rangle, \vec{z}=\langle 1,-3,5,7,9\rangle$, and $\vec{b}=\langle 2,-1,-2,-3,6\rangle$ find $\vec{v} \cdot \vec{w}, \vec{w} \cdot$ $\vec{v}, \vec{z} \cdot \vec{b}, \vec{z} \cdot \vec{v}$, and $\vec{v} \cdot \vec{v}$

Angle Between Vectors:

If θ is an angle between two nonzero vectors \vec{v} and \vec{w} then $\cos \theta=\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}$

Two vectors are orthogonal (perpendicular) iff $\vec{v} \cdot \vec{w}=0$ (remember $\cos \pi / 2=0$)

Ex: Find the angle between $\langle 3,-1,2\rangle$ and $\langle 1,-1,-2\rangle$

Vector Projections:

Let \vec{u} and \vec{v} be nonzero vectors. Moreover let $\vec{u}=\overrightarrow{w_{1}}+\overrightarrow{w_{2}}$, where $\overrightarrow{w_{1}}$ is parallel to \vec{v}, and $\overrightarrow{w_{2}}$ is orthogonal to \vec{v}

1. $\overrightarrow{w_{1}}$ is called the projection of \mathbf{u} onto \mathbf{v} or the vector component of \mathbf{u} along \mathbf{v}, and is denoted by $\overrightarrow{w_{1}}=$ proju $^{\prime} u$
2. $\overrightarrow{w_{2}}=\vec{u}-\overrightarrow{w_{1}}$ is called the vector component of u orthogonal to \mathbf{v}.

To project a vector \mathbf{u} onto a vector \mathbf{v} we drop a perpendicular from the terminal side of \mathbf{u} onto the vector \mathbf{w}_{1} containing vector \mathbf{v} then the vector with the same initial point as \mathbf{u} and \mathbf{v} to the point of intersection of \mathbf{v} and \mathbf{w}_{1} is the projection of \mathbf{u} onto \mathbf{v}

(from here on out vectors will be notated as bolded lower case letter instead of \vec{v})

Formula to find the Vector Projection:

Let \mathbf{v} and \mathbf{w} be vectors in R^{n} that have the same initial point.

$$
\operatorname{proj}_{w} v=\left(\frac{v \cdot w}{\|w\|^{2}}\right) w
$$

Ex. Given $\mathbf{v}=[3,-2,1]$ and $\mathbf{w}=[4,1,-5]$ find proju $^{\mathbf{w}}$ and projw

The Cross Product of Two Vectors in Space

The Cross Product
Let \mathbf{v} and \mathbf{w} be vectors in R^{3}, then the cross product of \mathbf{v} and \mathbf{w} is

$$
\mathbf{v} \times \mathbf{w}=\left[v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right]
$$

Note: the cross product is another vector, the best way to remember the cross product is through determinants, and the cross product is only defined when vectors are in 3-D.

Ex: If $\mathbf{u}=[1,-2,1]$ and $\mathbf{v}=[3,1,-2]$ find $\mathbf{u} \times \mathbf{v}, \mathbf{v} \times \mathbf{u}$, and $\mathbf{v} \times \mathbf{v}$.

Algebraic Properties of the Cross Product:

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in space, and let c be a scalar

- $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
- $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{v})$
- $\mathbf{c}(\mathbf{u} \times \mathbf{v})=(\mathbf{c} \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(\mathbf{c} \mathbf{v})$
- $\mathbf{u} \times 0=0 \times \mathbf{u}=0$
- $\mathbf{u} \times \mathbf{u}=0$
- $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ (triple scalar product)

Since the cross product is another vector we need to find the magnitude and direction of the cross product.

Geometric Properties of the Cross Product

Let \mathbf{u} and \mathbf{v} be nonzero vectors in space and let θ be the angle between \mathbf{u} and \mathbf{v}

- $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} (right hand rule)
- $\|u \times v\|=\|u\|\|v\| \sin \theta$
- $\mathbf{u} \times \mathbf{v}=0$ iff \mathbf{u} and \mathbf{v} are scalar multiples of each other
- $\mathbf{u} \times \mathbf{v}=0$ iff \mathbf{u} and \mathbf{v} are parallel
- $\|u \times v\|=$ area of the parallelogram having \mathbf{u} and \mathbf{v} as adjacent sides

Triple Scalar Product:

For vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} the triple scalar product is

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

(Its easier to solve for this using determinants)
Geometrically the triple scalar product is the volume of a parallelepiped that u, v, and w form in space as long as they all lie on different planes

If the triple scalar product $=0$ then two or more of the vectors are on the same plane (coplanar).

Ex: Find the volume of the parallelepiped having $\mathbf{u}=[3,-5,1] \mathbf{v}=[0,2,-2]$ and $\mathbf{w}=[3,1,1]$ as adjacent edges.

Lines and Planes in Space:

Lines in Space: To find the equation of a line in 2-D we need a point on the line and the slope of the line. Similarly to find the equation of a line in space we need a point on the line and the direction of the line for this we can use a vector.

Given a point $P\left(x_{1}, y_{1}, z_{1}\right)$ on a line and a vector $\mathbf{v}=[a, b, c]$ parallel to the line. The vector \mathbf{v} is the direction vector for the line and a, b, and c are direction numbers. We can say the line consists of all points $Q(x, y, z)$ for which $\overrightarrow{P Q}$ in parallel to v (a scalar multiple of v), therefore $\overrightarrow{P Q}=t \mathbf{v}$ Where t is a real number.

$$
\overrightarrow{P Q}=\left\langle x-x_{1}, y-y_{1}, z-z_{1}\right\rangle=\langle a t, b t, c t\rangle=t \mathbf{v}
$$

Parametric Equations of a Line in Space

A line L parallel to the vector $v=[a, b, c]$ and passing through the point $P\left[x_{1}, y_{1}, z_{1}\right]$ is represented by the parametric equations

$$
x=x_{1}+a t \quad y=y_{1}+b t \quad z=z_{1}+c t
$$

Or with the vector parameterization

$$
\mathbf{r}(t)=\left\langle x_{1}, y_{1}, z_{1}\right\rangle+t\langle a, b, c\rangle
$$

If we eliminate the parameter t we can obtain the symmetric equations

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Ex: Find the parametric and symmetric equations of the line L that passes though the point $(2,1,-3)$ and is parallel to $\mathbf{v}=[-1,-5,4]$
Ex: Find a set of parametric equations of the line that passes through the points $(-3,1,-2)$ and (5, 4, -6).

Planes in Space: Like a line in space a plane in space can be obtained from a point in the plane and a vector normal (perpendicular) to the plane.
If a plane contains point $P\left(x_{1}, y_{1}, z_{1}\right)$ having a nonzero normal vector $n=[a, b, c]$, this plane consists of all point $\mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ for which $\overrightarrow{P Q}$ is orthogonal to n . This can be found with a dot product.

$$
\begin{aligned}
n \bullet \overline{P Q} & =0 \\
{[a, b, c] \bullet\left[x-x_{1}, y-y_{1}, z-z_{1}\right] } & =0 \\
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right) & =0
\end{aligned}
$$

Standard Equation of a Plane in Space

The plane containing the point (x_{1}, y_{1}, z_{1}) and having normal vector $\mathbf{n}=[a, b, c$, $]$ can be represented by the standard form of the equation of the plane

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
$$

Since $\mathrm{x}_{1}, \mathrm{y}_{1}$, and z_{1}, are constants the equation can be rewritten as $a x+b y+c z+d=0$ this is known as the general form.

Ex: Find the equation of the plane through point $(1,2,3)$ and with normal vector $n=[-2,5,-6]$
Ex: Find the equation of the plane that passes through $(-1,2,4),(1,3,-1)$, and $(2,-3,1)$.

Facts:

- Two planes are parallel iff there normal vectors are scalar vectors of each other
- Two planes intersect in a line
- The angle between two planes is $\cos \theta=\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left\|\overrightarrow{n_{1}}\right\|\left\|\overrightarrow{n_{2}}\right\|}$
- Two planes are orthogonal iff $\mathrm{n}_{1} \cdot \mathrm{n}_{2}=0$

Ex: Find the angle between the two planes

$$
\begin{gathered}
x-2 y+z=0 \\
2 x+3 y-2 z=0
\end{gathered}
$$

and find the parametric equations of the line of intersection.

Surfaces in Space:

In previous sections we talked about spheres and planes a third type of surface in space is called a cylindrical surface.

Cylindrical Surface: Let C be a curve in a plane and let L be a line not in a parallel plane. The set of all lines parallel to L and interesting C is called a cylinder. C is called the generating curve (directrix) of the cylinder, and parallel lines are called rulings.

In geometry a cylinder refers to a right circular cylinder but the above definition refer to many types of cylinders.

Equations of Cylinders: The equation of a cylinder whose rulings are parallel to one of the coordinate axes contains only the variables corresponding to the other two axes.

Quadric Surface: quadric surfaces are the 3-D counterparts of the conic sections in the plane. The equation of a quadric surface is a second degree equation in three variables. The general form of the equation of a quadric surface is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0
$$

The trace of a surface is the intersection of the surface with a plane.

	Ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ $\frac{\text { Trace }}{\text { Ellipse } \quad} \quad \frac{\text { Plane }}{\text { Parallel to } x y \text {-plane }}$ Ellipse \quad Parallel to $x z$-plane Ellipse \quad Parallel to $y z$-plane The surface is a sphere if $a=b=c \neq 0$.	
	Hyperboloid of One Sheet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ Trace Plane Ellipse Parallel to $x y$-plane Hyperbola Parallel to $x z$-plane Hyperbola Parallel to $y z$-plane The axis of the hyperboloid corresponds to the variable whose coefficient is negative.	
	Hyperboloid of Two Sheets $\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ $\begin{array}{ll}\text { Trace } & \\ \begin{array}{ll}\text { Ellipse } & \text { Plane } \\ \text { Hyperbola } & \\ \text { Parallel to } x y \text {-plane } \\ \text { Parallel to to } x \text {-plane } \\ \text { Hyperbola } & \\ \text { Parallel to } y z \text {-plane }\end{array}\end{array}$ The axis of the hyperboloid corresponds to the variable whose coefficient is positive. There is no trace in the coordinate plane perpendicular to this axis.	

	Elliptic Cone$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$Trace Ellipse Plane Parallel to $x y$-plane Hyperbola Hyperbola Parallel to $x z$-plane Parallel to $y z$-plane The axis of the cone corresponds to the variable whose coefficient is negative. The traces in the coordinate planes parallel to this axis are intersecting lines.	
	Elliptic Paraboloid$z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$Trace Ellipse Plane Parallel to $x y$-plane Parabola Parallel to $x z$-plane Parabola Parallel to $y z$-plane The axis of the paraboloid corresponds to the variable raised to the first power.	
	Hyperbolic Paraboloid $z=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}$ The axis of the paraboloid corresponds to the variable raised to the first power.	

Ex: Classify the surface
a. $4 x^{2}-3 y^{2}+12 z^{2}+12=0$
b. $16 x^{2}-y^{2}+16 z^{2}=4$
c. $3 z+y^{2}=x^{2}$
d. $9 x^{2}+y^{2}-9 z^{2}-54 x-4 y-54 z+4=0$

Cylindrical and Spherical Coordinates:

Review: Polar Coordinates

Polar coordinates (r, θ) of a point (x, y) in the Cartesian plane are another way to plot a graph. The r represents the distance you move away from the origin and θ represents an angle in standard position.

Ex: Convert $(3,-3)$ to polar coordinates
Ex: Convert $\left(2, \frac{2 \pi}{3}\right)$ to rectangular coordinates
To convert from polar to rectangular

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

To convert from rectangular to polar

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& \Theta=\arctan (\mathrm{y} / \mathrm{x})
\end{aligned}
$$

Cylindrical Coordinates: the cylindrical coordinates (r, θ, z) for a point (x, y, z) in the rectangular coordinate system are the point ($r, \theta, 0$) where (r, θ) represents the polar coordinates of (x, y) and z stays the same.

Ex: Convert from cylindrical to rectangular

$$
(2, \pi / 3,-8)
$$

Ex: Find an equation in cylindrical coordinates representing the equation given in rectangular coordinates:
a. $x^{2}+y^{2}=9 z^{2}$
b. $y^{2}=x$

Ex: Find an equation in rectangular coordinates representing the equation given in cylindrical

Cylindrical coordinates:

 coordinates $r=\frac{z}{2}$

Spherical Coordinates: the spherical coordinates (ρ, θ, ϕ) for a point (x, y, z) in the rectangular coordinate system is the point (ρ, θ, ϕ) where

- ρ represents the distance from the origin to the point in space
- θ represents the angle in the plane from the positive x - axis to the point ($x, y, 0$)
- - ϕ represents the angle from positive z-axis to the line segment connecting the origin to the point (x, y, z), $0 \leq \phi \leq \pi$

To convert from spherical to rectangular

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

To convert from rectangular to spherical:

$$
\begin{aligned}
& \rho=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \tan \theta=y / x \\
& \cos \phi=z / \rho
\end{aligned}
$$

To convert from spherical to cylindrical ($r \geq 0$)

$$
\begin{aligned}
& r^{2}=\rho^{2} \sin ^{2} \theta \\
& \theta=\theta \\
& z=p \cos \emptyset
\end{aligned}
$$

Ex: Find the equation in spherical for the equation in rectangular coordinates: $x^{2}+y^{2}=z^{2}$

