
Vector AnalysisVector AnalysisVector AnalysisVector Analysis    Vector FieldsVector FieldsVector FieldsVector Fields    Suppose a region in the plane or space is occupied by a moving “fluid” such as air or water. Imagine this “fluid” is made up of a very large number of particles that at any instant of time a given particle has velocity vector vvvv. The set of these velocity vectors is what we call a vector fieldvector fieldvector fieldvector field. If we examine these velocities we understand that they will vary from position to position. 
 

Some common examples of vector fields: wind shear off an object, gravitational fields, 

electric and magnetic fields, etc… 
 VVVVector Field:ector Field:ector Field:ector Field:    A vector field vector field vector field vector field in R2 or R3 respectively is a function FFFF that assigns to each point (x,y) or (x,y,z) respectively a 2-dimensional or 3-dimensional vector FFFF(x,y) or FFFF(x,y,z) where              FFFF(x,y) =〈*+(,, .), */(,, .)〉 or  FFFF(x,y,z) = 〈*+(,, ., 1), */(,, ., 1), *2(,, ., 1)〉 
 In general, a vector field is a function whose domain is the set of points in R2  or in R3 and whose range is a set of vectors in V2 or V3. 
  

  A unit vector field unit vector field unit vector field unit vector field is a vector field FFFF such that ║3(4)║=1 for all points P in the domain.  A vector field FFFF is called a radial vector field radial vector field radial vector field radial vector field if FFFF(P) depends only on a distance r from point P to the origin. An important example of a unit radial vector field is: 
78 = 〈98 , :8 , ;8〉   where r  = <,/ = ./ = 1/

 

We have already worked with one type of vector field in the gradient. The gradient gradient gradient gradient vector field vector field vector field vector field of a differentiable function ( ),  ,  f x y z  is the field of gradient vectors given by: 
@A = 3(,, ., 1) = 〈A9 , A: , A;〉 This type of vector field is also known as a conservative vector fieldconservative vector fieldconservative vector fieldconservative vector field, and f  is called a potential function potential function potential function potential function for @A.  



Ex: Ex: Ex: Ex: Find the gradient vector field for the potential function         A(,, ., 1) = ,. = .1/  How would we know a vector field is conservative, that is it came from the partial derivatives of a potential function?  CrossCrossCrossCross----Partial Property of Conservative Vector Fields:Partial Property of Conservative Vector Fields:Partial Property of Conservative Vector Fields:Partial Property of Conservative Vector Fields:    If a vector field F(,, ., 1) =  〈*+, */, *2〉    is conservative, then  G3+G.  =  G3/G, , G3/G1 =  G32G. , G32G, =  G3+G1  If F(,, .) =  〈*H, *I〉    then only the first equality has to hold 
 Ex: Ex: Ex: Ex: Show that F(,, ., 1) =  〈3, 1, 2〉    is conservative. Would any constant vector field be conservative?     Ex: Ex: Ex: Ex: Is F(,, .) =  〈5y2, 15xy〉 conservative?  Ex: Ex: Ex: Ex: Is F(,, ., 1) =  〈79cos., −79sin., 2〉 conservative?  Let FFFF be a vector field on a simply connected domain D (domain has no “holes”). If F F F F satisfies the cross partials condition, then F F F F is conservative and therefore has a potential function.  
If f  is a potential function for F that  

OPO9 =  3+, OPO: =  3/, etc. or another way to look at it is Q *+R, =  Q */R. = ….. = A(,, ., … )   Ex: Ex: Ex: Ex: Determine if F(,, .) = 〈,./, ,/.〉 is conservative, if so find its potential function. Ex: Ex: Ex: Ex: Determine if F(,, ., 1) = 〈.1, ,., ,. = 21〉 is conservative, if so find its potential function.         Line IntegralsLine IntegralsLine IntegralsLine Integrals    A line integral line integral line integral line integral (curve integral) is similar to a single integral except instead of integrating over an interval we integrate over a curve. These integrals are used to solve problems 

like fluid flow, electricity, forces and magnetism. 

Like all integrals this line integral is defined through a process of subdivisions, 

summations, and limits. We divide C into n consecutive arcs, choose a sample point Pi in 

each arc Ci and form a Riemann sum. 
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The line integral of f over C  is      Q A(,, ., 1)R^ = lim∆ab→d ∑ A(4U)∆^_U`+f  where ds  is the arc length differential 
 Computing a Scalar Line Integral:Computing a Scalar Line Integral:Computing a Scalar Line Integral:Computing a Scalar Line Integral: Let rrrr(t) be a parameterization of a curve C for a ≤ t ≤ b. If ( ), ,f x y z  and ( )t′r  are continuous, then  i A(,, ., 1)R^ =  i Ajk(Y)l║k′(Y)║RYm

nf  
   Ex: Ex: Ex: Ex: Evaluate Q <,/ = ./f ds along the curve (Y) =  〈4 cos Y , 4 sin Y , 3Y〉 ;         −2q ≤ Y ≤ 2q Ex:Ex:Ex:Ex: Evaluate Q (,. = . = 1)r ds along rrrr(t) = 〈2Y, Y, 2 − 2Y〉 on 0 ≤ Y ≤ 1     Vector Line IntegralsVector Line IntegralsVector Line IntegralsVector Line Integrals    When you carry a backpack up a mountain you do work against the earth’s gravitational field. The work or energy expended is an example of quantity represented by a vector line integral (work done by force).  Computing a Vector Line Integral (Work Done by Force over a Curve in Space):Computing a Vector Line Integral (Work Done by Force over a Curve in Space):Computing a Vector Line Integral (Work Done by Force over a Curve in Space):Computing a Vector Line Integral (Work Done by Force over a Curve in Space):    Suppose F(,, ., 1) =  〈*+(,, ., 1), */(,, ., 1), *2(,, ., 1)〉    represents a force throughout a region in space and suppose u(t) =  〈g(t), h(t), k(t)〉,  a ≤ t ≤ b is a smooth curve C in the region. Then the work done by FFFF over C defined by rrrr(t) from a to b is: v =  i FR^ =  i F • xR^ =  i Fju(t)l • uy(t)RYz

{||  This integral is known as a vector line integral. Another notation is Q FR^ =  Q F+R, = F/R. = F2R1|f   Two big differences between  vector line integrals and a line integrals (scalar line integrals) is scalar line integrals are integrating functions and vector line integrals are integrating vector fields over curves and, that a vector line integral depends on a direction along a curve.  Ex:Ex:Ex:Ex: Find the vector line integral for F(,, ., 1) =  〈x, y, z〉    along the path  rrrr(t) = 〈cosY, sinY, Y〉 for 0 ≤ t ≤ 3π. Ex:Ex:Ex:Ex: Find the work done by FFFF from (0,0,0) to (1,1,1) over the curve  rrrr(t) = 〈Y, Y/, Y~〉 where FFFF = 〈3,/ − 3,, 31, 1〉 .  



Conservative Vector FieldsConservative Vector FieldsConservative Vector FieldsConservative Vector Fields    When a curve C is closedclosedclosedclosed, has the same start and end point, then we say the line integral of FFFF is the circulation circulation circulation circulation of FFFF around C. Remember a conservative vector field F F F F possesses a function f  such that FFFF=@A  Fundamental Theorem of Conservative Vector Fields:Fundamental Theorem of Conservative Vector Fields:Fundamental Theorem of Conservative Vector Fields:Fundamental Theorem of Conservative Vector Fields:    Assume the FFFF=@A on a domain D, so f  is the potential function for FFFF. 1.   If C is a path from point P  to point Q in D then i FR^ = �(�) −  �(4)f  F F F F is path-independent (all that matters is the start and end points) 2. The circulation around a closed path C (P=Q) is zero: � FR^ = 0f  
 Ex: Ex: Ex: Ex: Let    F(,, ., 1) = 〈2,. = 1, ,/, ,〉, , , , evaluate Q FR^f  where C  is a path from  P = (1,-1,2) to Q =(2,2,3). Ex:Ex:Ex:Ex: Determine if F(,, ., 1) = 〈2,. − 1, ,/ = 2., 1 − ,〉    is conservative, if so find its potential function and evaluate its vector line integral where C is a curve from (1, 0, 2) to (2, 1, 3).      Green’s TheoremGreen’s TheoremGreen’s TheoremGreen’s Theorem    Remember that for a conservative vector field the circulation around a closed path is zero. For vector fields in the plane, Green’s Theorem tells us what happens when F is not conservative.  A simple closed curve simple closed curve simple closed curve simple closed curve is a curve that does not intersect itself.  If a domain D has boundary C where C is a simple closed curve then we can denote C as G�. The counterclockwise orientation of D is called the boundary orientation.boundary orientation.boundary orientation.boundary orientation.    Notation: If    F(,, .) = 〈*+, */〉    then         Q FR^ =  Q *+|f R, = */R.  Green’s Theorem:Green’s Theorem:Green’s Theorem:Green’s Theorem:    Let D be a domain whose boundary ∂D is a simple closed curve, oriented counterclockwise. Then  ∮ FR^ = ∮ *+R, = */R. =��O� ∬ (O��O9� − O��O: )dA 
 Ex:Ex:Ex:Ex: Compute the circulation of F(,, .) = 〈sin x, x/ y2〉 around the triangular path C , where C  goes from point (0, 0) to (2, 0) to (2, 2) to (0, 0). 



 Ex:Ex:Ex:Ex: Use Green’s Theorem to evaluate  i (arctan (,/f ) − ./)R, = (,/. − log(./ = 1)R. where C is the semicircle . =  √4 − ,/ together with the line segment form  (-2, 0) to (2, 0).      Stokes’ TheoremStokes’ TheoremStokes’ TheoremStokes’ Theorem    Stokes’ Theorem can be regarded as a higher dimensional version of Green’s Theorem. Whereas Green’s Theorem relates to double integrals over a plane region D to a line integral around its plane boundary curve, Stokes’ Theorem relates to a surface integral over a surface S to a line integral around the boundary curve of S (which is a space curve). 
 Surface IntegralsSurface IntegralsSurface IntegralsSurface Integrals    Rather than integrating a function or vector field over a curve we can integrate them over a surface. Surface integrals of vector fields represent fluxfluxfluxflux or rates of flow through the surface, such as molecules across a cell membrane. Because flux goes through a surface from one side to another we need to specify orientation of flow in the positive direction. The normal vector eeeen n n n at a point on the surface points in the direction of orientation.  
A vector surface integral is defined as ∬ F ⋅ R� =  ∬ (F ⋅  ���� )R� 

 To compute this integral you would have to parameterize the surface S.  Stokes’ theorem is an extension of Green’s theorem to three dimensions in which circulation is related to a surface integrals. The following depicts three surfaces with different boundaries. 

  When S is oriented, we can specify an orientation of ∂S called the boundary orientation. Imagine that you are a unit normal vector walking along a boundary curve. The boundary orientation is the direction for which the surface is on your left as you walk.  



The last thing we need to define is the curl. The curl curl curl curl of a vector field F(,, ., 1) = 〈*+, */, *2〉    is the vector field defined by the symbolic determinant 
���V(F) = � � � �OO9 OO: OO;*+ */ *2

� or ���V(F) = @ × F F F F where @ =  〈 ��� , ��  , ��¡〉 
Ex:Ex:Ex:Ex: Calculate the curl of F =F =F =F = 〈,., 79, . = 1〉  If F F F F is conservative then curl(FFFF) = 0  Stokes’ Theorem:Stokes’ Theorem:Stokes’ Theorem:Stokes’ Theorem:    Let S be oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let F F F F be a vector field whose components have continuous partial derivatives on an open region in R3 that contains S. Then   

� F ∙ R^ = £ ���V(F) ∙ R�¤O�  
 

 The Divergence TheoremThe Divergence TheoremThe Divergence TheoremThe Divergence Theorem    The divergence theorem is an extension of Stokes’ theorem for closed surfaces and triple integrals.  One term we need to define is the divergence of a vector field  F(,, ., 1) =  〈*H, *I, *¦〉    denoted div(FFFF).   R�§(F) =  ∂*+∂x = ∂*/∂y = ∂*2∂z =  @ ⋅ F    Ex: Ex: Ex: Ex: Evaluate the divergence of F F F F = 〈79: , ,., 1~〉  The Divergence TheoremThe Divergence TheoremThe Divergence TheoremThe Divergence Theorem    Let S be a closed surface that encloses a region W in R3. Assume S is piecewise smooth and is oriented by normal vectors pointing to the outside of W. Let F be a vector field whose domain contains W. Then  
£ F ⋅ R� =  ¨ R�§(F)R�©a  

  Ex: Ex: Ex: Ex: Find the flux of a vector field ( , , )x y z z y x= + +F i j k  over the unit sphere 2 2 2 1yx z+ + = .        



    
Ex: Use the divergence to evaluate 

s

dS∫∫F  where  

F(,, ., 1) = 〈,., − +/ ./, 1〉 and the surface consists of the three  

surfaces, 1 = 4 − 3,/ − 3./, 1 ≤ 1 ≤ 4 on the top, ,/ = ./ = 1, 

 0 ≤ 1 ≤ 1 on the sides, and 1 = 0 on the bottom.          Summary of the Summary of the Summary of the Summary of the “Fundamental Theorems”“Fundamental Theorems”“Fundamental Theorems”“Fundamental Theorems”    The Fundamental Theorem of Calculus:The Fundamental Theorem of Calculus:The Fundamental Theorem of Calculus:The Fundamental Theorem of Calculus:        Q *y(,)R, = *(ª) − *(«)mn  where [a, b] is an interval over the x axis 
 The Fundamental Theorem of Line Integrals:The Fundamental Theorem of Line Integrals:The Fundamental Theorem of Line Integrals:The Fundamental Theorem of Line Integrals:        Q @AR^ = A(�) −  A(4)r  where P and Q are end points over a smooth curve  Green’s Theorem:Green’s Theorem:Green’s Theorem:Green’s Theorem:        ∮ ∬ ®O��O9 − O��O: ¯�O� dA where D is the region bounded by a simple closed curve  Stokes’ Theorem:Stokes’ Theorem:Stokes’ Theorem:Stokes’ Theorem:        ∮ FR^ =  ∬ ���V(F)R�aO�  where S is the surface with the boundary curve C  Divergence Theorem:Divergence Theorem:Divergence Theorem:Divergence Theorem:        ∬ F ⋅ R� =  ∭ R�§(F)R�©a  where S is the boundary surface of the 3-D region W 


