Vector Analysis

Vector Fields

Suppose a region in the plane or space is occupied by a moving "fluid" such as air or water. Imagine this "fluid" is made up of a very large number of particles that at any instant of time a given particle has velocity vector v. The set of these velocity vectors is what we call a vector field. If we examine these velocities we understand that they will vary from position to position.

Some common examples of vector fields: wind shear off an object, gravitational fields, electric and magnetic fields, etc...

Vector Field:

A vector field in R^{2} or R^{3} respectively is a function F that assigns to each point (x, y) or (x, y, z) respectively a 2 -dimensional or 3-dimensional vector $\mathrm{F}(x, y)$ or $\mathrm{F}(x, y, z)$ where

$$
\mathrm{F}(x, y)=\left\langle F_{1}(x, y), F_{2}(x, y)\right\rangle \text { or } \mathrm{F}(x, y, z)=\left\langle F_{1}(x, y, z), F_{2}(x, y, z), F_{3}(x, y, z)\right\rangle
$$

In general, a vector field is a function whose domain is the set of points in R^{2} or in R^{3} and whose range is a set of vectors in V^{2} or V^{3}.

A unit vector field is a vector field F such that $\|\boldsymbol{F}(P)\|=1$ for all points P in the domain. A vector field F is called a radial vector field if $F(P)$ depends only on a distance r from point P to the origin.
An important example of a unit radial vector field is:

$$
e_{r}=\left\langle\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right\rangle \text { where } r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

We have already worked with one type of vector field in the gradient. The gradient vector field of a differentiable function $f(x, y, z)$ is the field of gradient vectors given by:

$$
\nabla f=\boldsymbol{F}(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

This type of vector field is also known as a conservative vector field, and f is called a potential function for ∇f.

Ex: Find the gradient vector field for the potential function

$$
f(x, y, z)=x y+y z^{2}
$$

How would we know a vector field is conservative, that is it came from the partial derivatives of a potential function?

Cross-Partial Property of Conservative Vector Fields:

If a vector field $\mathbf{F}(x, y, z)=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is conservative, then

$$
\frac{\partial \boldsymbol{F}_{1}}{\partial y}=\frac{\partial \boldsymbol{F}_{2}}{\partial x}, \frac{\partial \boldsymbol{F}_{2}}{\partial z}=\frac{\partial \boldsymbol{F}_{3}}{\partial y}, \frac{\partial \boldsymbol{F}_{3}}{\partial x}=\frac{\partial \boldsymbol{F}_{1}}{\partial z}
$$

If $\mathbf{F}(x, y)=\left\langle F_{1}, F_{2}\right\rangle$ then only the first equality has to hold
Ex: Show that $\mathbf{F}(x, y, z)=\langle 3,1,2\rangle$ is conservative. Would any constant vector field be conservative?

Ex: Is $\mathbf{F}(x, y)=\left\langle 5 y^{3}, 15 \mathrm{xy}\right\rangle$ conservative?
Ex: Is $\mathbf{F}(x, y, z)=\left\langle e^{x} \cos y,-e^{x} \sin y, 2\right\rangle$ conservative?
Let F be a vector field on a simply connected domain D (domain has no "holes"). If F satisfies the cross partials condition, then F is conservative and therefore has a potential function.

If f is a potential function for \mathbf{F} that $\frac{\partial f}{\partial x}=\boldsymbol{F}_{1}, \frac{\partial f}{\partial y}=\boldsymbol{F}_{2}$, etc. or another way to look at it is $\int F_{1} d x=\int F_{2} d y=\ldots . . .=f(x, y, \ldots)$

Ex: Determine if $\mathbf{F}(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle$ is conservative, if so find its potential function. Ex: Determine if $\mathbf{F}(x, y, z)=\langle y z, x y, x y+2 z\rangle$ is conservative, if so find its potential function.

Line Integrals

A line integral (curve integral) is similar to a single integral except instead of integrating over an interval we integrate over a curve. These integrals are used to solve problems like fluid flow, electricity, forces and magnetism.
Like all integrals this line integral is defined through a process of subdivisions, summations, and limits. We divide C into n consecutive arcs, choose a sample point P_{i} in each arc C_{i} and form a Riemann sum.

Partition of \mathcal{C} into N small arcs

Choice of sample points P_{i} in each arc

FIGURE 1 The curve \mathcal{C} is divided into N small arcs.

$$
\sum_{i=1}^{n} f\left(P_{i}\right)\left(\text { length of } C_{i}\right)=\sum_{i=1}^{n} f\left(P_{i}\right) \Delta s_{i}
$$

The line integral of f over C is
$\int_{C} f(x, y, z) d s=\lim _{\Delta s_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(P_{i}\right) \Delta s$ where $d s$ is the arc length differential

Computing a Scalar Line Integral:

Let $\mathbf{r}(\mathrm{t})$ be a parameterization of a curve C for $a \leq t \leq b$. If $f(x, y, z)$ and $\mathbf{r}^{\prime}(t)$ are continuous, then

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(\boldsymbol{r}(t))\left\|\boldsymbol{r}^{\prime}(t)\right\| d t
$$

Ex: Evaluate $\int_{C} \sqrt{x^{2}+y^{2}} d s$ along the curve $(t)=\langle 4 \cos t, 4 \sin t, 3 t\rangle ;$

$$
-2 \pi \leq t \leq 2 \pi
$$

Ex: Evaluate $\int_{c}(x y+y+z) d s$ along $r(t)=\langle 2 t, t, 2-2 t\rangle$ on $0 \leq t \leq 1$

Vector Line Integrals

When you carry a backpack up a mountain you do work against the earth's gravitational field. The work or energy expended is an example of quantity represented by a vector line integral (work done by force).
Computing a Vector Line Integral (Work Done by Force over a Curve in Space): Suppose $\mathbf{F}(x, y, z)=\left\langle F_{1}(x, y, z), F_{2}(x, y, z), F_{3}(x, y, z)\right\rangle$ represents a force throughout a region in space and suppose $\mathbf{r}(\mathrm{t})=\langle\mathrm{g}(\mathrm{t}), \mathrm{h}(\mathrm{t}), \mathrm{k}(\mathrm{t})\rangle$, $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$ is a smooth curve C in the region. Then the work done by F over C defined by $r(t)$ from a to b is:

$$
W=\int_{\mathrm{C}} \mathbf{F} d s=\int_{\mathrm{C}} \mathbf{F} \cdot \mathbf{T} d s=\int_{\mathrm{a}}^{\mathrm{b}} \mathbf{F}(\mathbf{r}(\mathrm{t})) \cdot \mathbf{r}^{\prime}(\mathrm{t}) d t
$$

This integral is known as a vector line integral.
Another notation is $\int_{C} \mathbf{F} d s=\int_{C} \mathrm{~F}_{1} d x+\mathrm{F}_{2} d y+\mathrm{F}_{3} d z$
Two big differences between vector line integrals and a line integrals (scalar line integrals) is scalar line integrals are integrating functions and vector line integrals are integrating vector fields over curves and, that a vector line integral depends on a direction along a curve.
Ex: Find the vector line integral for $\mathbf{F}(x, y, z)=\langle\mathrm{x}, \mathrm{y}, \mathrm{z}\rangle$ along the path $\mathrm{r}(\mathrm{t})=\langle\cos t, \sin t, t\rangle$ for $0 \leq t \leq 3 \pi$.
Ex: Find the work done by \mathbf{F} from $(0,0,0)$ to $(1,1,1)$ over the curve $\mathrm{r}(\mathrm{t})=\left\langle t, t^{2}, t^{4}\right\rangle$ where $\mathrm{F}=\left\langle 3 x^{2}-3 x, 3 z, 1\right\rangle$.

Conservative Vector Fields

When a curve C is closed, has the same start and end point, then we say the line integral of F is the circulation of F around C.
Remember a conservative vector field F possesses a function f such that $\mathrm{F}=\nabla f$

Fundamental Theorem of Conservative Vector Fields:

Assume the $\mathrm{F}=\nabla f$ on a domain D , so f is the potential function for F .

1. If C is a path from point P to point Q in D then

$$
\int_{C} \mathbf{F} d s=V(Q)-V(P)
$$

F is path-independent (all that matters is the start and end points)
2. The circulation around a closed path $\mathrm{C}(P=Q)$ is zero:

$$
\oint_{C} \mathbf{F} d s=0
$$

Ex: Let $\mathbf{F}(x, y, z)=\left\langle 2 x y+z, x^{2}, x\right\rangle$, evaluate $\int_{C} \mathbf{F} d s$ where C is a path from $P=(1,-1,2)$ to $Q=(2,2,3)$.
Ex: Determine if $\mathbf{F}(x, y, z)=\left\langle 2 x y-z, x^{2}+2 y, 1-x\right\rangle$ is conservative, if so find its potential function and evaluate its vector line integral where C is a curve from ($1,0,2$) to $(2,1,3)$.

Green's Theorem

Remember that for a conservative vector field the circulation around a closed path is zero. For vector fields in the plane, Green's Theorem tells us what happens when F is not conservative.

A simple closed curve is a curve that does not intersect itself.
If a domain D has boundary C where C is a simple closed curve then we can denote C as ∂D. The counterclockwise orientation of D is called the boundary orientation.
Notation:
If $\mathbf{F}(x, y)=\left\langle F_{1}, F_{2}\right\rangle$ then

$$
\int_{C} \mathbf{F} d s=\int_{C} F_{1} d x+F_{2} d y
$$

Green's Theorem:

Let D be a domain whose boundary ∂D is a simple closed curve, oriented counterclockwise. Then

$$
\oint_{\partial D} \mathbf{F} d s=\oint_{\partial \mathrm{D}} F_{1} d x+F_{2} d y=\iint_{D}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A
$$

Ex: Compute the circulation of $\mathbf{F}(x, y)=\left\langle\sin \mathrm{x}, \mathrm{x}^{2} \mathrm{y}^{3}\right\rangle$ around the triangular path C, where C goes from point $(0,0)$ to $(2,0)$ to $(2,2)$ to $(0,0)$.

Ex: Use Green's Theorem to evaluate

$$
\int_{C}\left(\arctan \left(x^{2}\right)-y^{2}\right) d x+\left(x^{2} y-\log \left(y^{2}+1\right) d y\right.
$$

where C is the semicircle $y=\sqrt{4-x^{2}}$ together with the line segment form $(-2,0)$ to $(2,0)$.

Stokes' Theorem

Stokes' Theorem can be regarded as a higher dimensional version of Green's Theorem. Whereas Green's Theorem relates to double integrals over a plane region D to a line integral around its plane boundary curve, Stokes' Theorem relates to a surface integral over a surface S to a line integral around the boundary curve of S (which is a space curve).

Surface Integrals

Rather than integrating a function or vector field over a curve we can integrate them over a surface. Surface integrals of vector fields represent flux or rates of flow through the surface, such as molecules across a cell membrane.
Because flux goes through a surface from one side to another we need to specify orientation of flow in the positive direction. The normal vector \mathbf{e}_{n} at a point on the surface points in the direction of orientation.

A vector surface integral is defined as $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathbf{S}}\left(\mathbf{F} \cdot \mathbf{e}_{\mathbf{n}}\right) d \mathbf{S}$
To compute this integral you would have to parameterize the surface S.
Stokes' theorem is an extension of Green's theorem to three dimensions in which circulation is related to a surface integrals. The following depicts three surfaces with different boundaries.

(A) Boundary consists of a single closed curve

(B) Boundary consists of three closed curves

(C) Closed surface (the boundary is empty)

FIGURE 1 Surfaces and their boundaries.
When S is oriented, we can specify an orientation of ∂S called the boundary orientation. Imagine that you are a unit normal vector walking along a boundary curve. The boundary orientation is the direction for which the surface is on your left as you walk.

The last thing we need to define is the curl. The curl of a vector field $\mathbf{F}(x, y, z)=$ $\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is the vector field defined by the symbolic determinant

$$
\operatorname{curl}(\mathbf{F})=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \text { or } \operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F} \text { where } \nabla=\left\langle\frac{\partial}{\partial \mathrm{x}}, \frac{\partial}{\partial y}, \frac{\partial}{\partial \mathrm{z}}\right\rangle
$$

Ex: Calculate the curl of $\mathrm{F}=\left\langle x y, e^{x}, y+z\right\rangle$
If F is conservative then $\operatorname{curl}(\mathrm{F})=0$

Stokes' Theorem:

Let S be oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in R^{3} that contains S. Then

$$
\oint_{\partial S} \mathbf{F} \cdot d s=\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}
$$

The Divergence Theorem

The divergence theorem is an extension of Stokes' theorem for closed surfaces and triple integrals.

One term we need to define is the divergence of a vector field $\mathbf{F}(x, y, z)=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ denoted $\operatorname{div}(\mathbf{F})$.

$$
\operatorname{div}(\mathbf{F})=\frac{\partial F_{1}}{\partial \mathrm{x}}+\frac{\partial F_{2}}{\partial \mathrm{y}}+\frac{\partial F_{3}}{\partial \mathrm{z}}=\nabla \cdot \mathbf{F}
$$

Ex: Evaluate the divergence of $\mathbf{F}=\left\langle e^{x y}, x y, z^{4}\right\rangle$

The Divergence Theorem

Let S be a closed surface that encloses a region W in R^{3}. Assume S is piecewise smooth and is oriented by normal vectors pointing to the outside of W . Let F be a vector field whose domain contains W . Then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{W} \operatorname{div}(\mathbf{F}) d V
$$

Ex: Find the flux of a vector field $\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$ over the unit sphere $x^{2}+y^{2}+z^{2}=1$.

Ex: Use the divergence to evaluate $\iint_{s} \mathrm{~F} d S$ where
$\mathbf{F}(x, y, z)=\left\langle x y,-\frac{1}{2} y^{2}, z\right\rangle$ and the surface consists of the three surfaces, $z=4-3 x^{2}-3 y^{2}, 1 \leq z \leq 4$ on the top, $x^{2}+y^{2}=1$, $0 \leq z \leq 1$ on the sides, and $z=0$ on the bottom.

Summary of the "Fundamental Theorems"

The Fundamental Theorem of Calculus:

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) \text { where }[\mathrm{a}, \mathrm{~b}] \text { is an interval over the } \mathrm{x} \text { axis }
$$

The Fundamental Theorem of Line Integrals:

$\int_{c} \nabla f d s=f(Q)-f(P)$ where P and Q are end points over a smooth curve

Green's Theorem:

$\oint_{\partial D} \iint_{D}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A$ where D is the region bounded by a simple closed curve

Stokes' Theorem:

$\oint_{\partial S} \mathbf{F} d s=\iint_{S} \operatorname{curl}(\mathbf{F}) d \mathbf{S}$ where S is the surface with the boundary curve C

Divergence Theorem:

$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{W} \operatorname{div}(\mathbf{F}) d V$ where S is the boundary surface of the 3-D region W

