Trigonometry

Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

$$
\alpha(\text { alpha }), \quad \beta(\text { beta }), \theta(\text { thet } a)
$$

as well as upper case letters A, B, and C
The measure of an angle is determined by the amount of rotation from the initial side to the terminal side.

Degree Measure

The amount of rotation in an angle with measure one degree, denoted by 1^{0}, is equivalent to the rotation in $1 / 360$ of an entire circle about the vertex.
a full revolution $=360^{\circ}$
a half of a revolution $=180^{\circ}$
a quarter of a revolution $=90^{\circ}$
and so on.....
The most common angles you will see are multiples of $30^{\circ}, 45^{\circ}$, and 60°

Radian Measure

Another way to measure angles is in radians, which is useful in calculus. To define we use a central angle of a circle, one whose vertex is in the center of the circle

Definition:

One radian is the measure of a central angle θ that intercepts an arc \boldsymbol{s} equal in length to the radius r of a circle.

In general, the radian measure of a central angle θ is obtained be dividing the arc length s by r, that is $s / r=\theta$ measured in radians.

Since the circumference of a circle is $2 \pi r$ the arclength s (of the entire circle) is $2 \pi r$. Because $2 \pi \approx 6.28$, there are just over six radius lengths in a full circle.

One full revolution has radian measure of 2π

a half of a revolution $=\frac{2 \pi}{2}=\pi$ radians
a quarter of a revolution $=\frac{2 \pi}{4}=\frac{\pi}{2}$ radians
a sixth of a revolution $=\frac{2 \pi}{6}=\frac{\pi}{3}$ radians

Conversions between Degrees and Radians

1. Convert Degrees to Radians: multiply degrees by $\frac{\pi}{180^{\circ}}$
2. Convert Radians to Degrees: multiply radians by $\frac{180^{\circ}}{\pi}$

Remember: we do not write the units for radian measure

The Unit Circle:

The unit circle is a circle centered at the origin with radius 1 so the equation of this circle would be $x^{2}+y^{2}=1$. We use this circle to help us define the six trigonometric functions.
We start by working with the two most basic trigonometric functions the $\boldsymbol{\operatorname { s i n }}$ of θ, written as, $\boldsymbol{\operatorname { s i n }}(\boldsymbol{\theta})$ or $\boldsymbol{\operatorname { s i n }} \theta$ and $\boldsymbol{\operatorname { c o s i n }}$ of θ written as $\boldsymbol{\operatorname { c o s }}(\theta)$ or $\cos \theta$, where θ is an angle in standard position.

If $\boldsymbol{\theta}$ is an angle in standard position and (x, y) is the point of intersection of the terminal side and the unit circle, then

$$
\sin \theta=y \text { and } \cos \theta=x
$$

The domain of both sine and cosine is the set of all angles in standard position or $(-\infty, \infty)$ and the range for each is $[-1,1]$

There are four other trigonometric functions. They are tangent (tan), cotangent (cot), secant (sec), and cosecant (csc). These can also be defined using the unit circle.
If θ is an angle in standard position and (x, y) is the point of intersection of the terminal side and the unit circle, we define the tangent, cotangent, secant, and cosecant as

$$
\tan \theta=\frac{y}{x}, \cot \theta=\frac{x}{y}, \sec \theta=\frac{1}{x}, \csc \theta=\frac{1}{y}
$$

Since these functions are equal to fractional values we need to restrict the domains to keep the denominators from being zero.
Since $\sin \theta=y$ and $\cos \theta=x$ we can rewrite each of the previous in terms of sine and cosine

$$
\boldsymbol{\operatorname { t a n }} \theta=\frac{\boldsymbol{\operatorname { s i n }} \theta}{\boldsymbol{\operatorname { c o s }} \theta}, \boldsymbol{\operatorname { c o t }} \theta=\frac{\boldsymbol{\operatorname { c o s }} \theta}{\boldsymbol{\operatorname { s i n }} \theta}, \sec \theta=\frac{1}{\boldsymbol{\operatorname { c o s }} \theta}, \quad \csc \theta=\frac{1}{\boldsymbol{\operatorname { s i n }} \theta}
$$

again providing that the denominator is not zero.

$\boldsymbol{\theta}$ degrees	0°	30°	45°	60°	90°	180	270°
θ radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$
$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	0	$1 / 2$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	-1	0
$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undefined	0	Undefined

Signs of the trigonometric functions in the four quadrants.

- Both x and y are positive in the first quadrant, all six functions are positive in the first quadrant.
- Only y is positive in the second quadrant, only sine and cosecant are positive in the second quadrant.
- Both x and y are negative in the third quadrant, only tangent and cotangent are positive in the third quadrant.
- Only x is positive in the fourth quadrant, only cosine and secant are positive in the fourth quadrant.

Definitions of Trigonometric Functions of any angle

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r=\sqrt{x^{2}+y^{2}} \neq 0$.

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} y \neq 0 \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \quad x \neq 0 \\
\tan \theta=\frac{y}{x} x \neq 0 & \cot \theta=\frac{x}{y} \quad y \neq 0
\end{array}
$$

Ex: Let $(4,-3)$ be on the terminal side of θ. Find the value of the sine, cosine, and tangent of θ.
Ex: Given $\cos \theta=3 / 5$ and $\tan \theta<0$, find $\sin \theta$.

Right Triangles

Hypotenuse (hyp) - side connecting angle theta and other non right angle Opposite (opp) - side connecting right angle and other non right angle
Adjacent (adj) - side connecting theta and right angle

Pythagorean Theorem:

$$
a^{2}+b^{2}=c^{2} \text { or }(o p p)^{2}+(a d j)^{2}=(h y p)^{2}
$$

The Six Trigonometric Functions and Right Triangles

Let θ be an acute angle of a right triangle, the six trig functions of the angle θ are defined as follows:

$$
\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}=\frac{o p p}{h y p} \quad \boldsymbol{\operatorname { c s c }} \boldsymbol{\theta}=\frac{h y p}{o p p}
$$

$$
\begin{array}{ll}
\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}=\frac{a d j}{h y p} & \boldsymbol{\operatorname { s e c }} \boldsymbol{\theta}=\frac{h y p}{a d j} \\
\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}=\frac{o p p}{a d j} & \boldsymbol{\operatorname { c o t } \boldsymbol { \theta }}=\frac{a d j}{o p p}
\end{array}
$$

opp $=$ the length of the side opposite θ
adj $=$ the length of the side adjacent to θ
hyp $=$ the length of the side that does not touch the 90° angle
Look at right triangles: $45^{\circ}, 45^{\circ}, 90^{\circ}$ and $30^{\circ}, 60^{\circ}, 90^{\circ}$
And evaluate the six trig functions for each theta.

Trigonometric Identities

We use trig. identities to:

1. Evaluate trig. functions
2. Simplify trig. expressions
3. Develop additional trig. identities
4. Solve trig. Equations

Reciprocal Identities

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

Quotient Identities

$$
\boldsymbol{\operatorname { t a n }} \theta=\frac{\boldsymbol{\operatorname { s i n }} \theta}{\boldsymbol{\operatorname { c o s }} \theta}, \quad \cot \theta=\frac{\boldsymbol{\operatorname { c o s }} \theta}{\boldsymbol{\operatorname { s i n }} \theta}
$$

Pythagorean Identities

$$
\begin{array}{r}
\boldsymbol{\operatorname { s i n }}^{2} \theta+\cos ^{2} \theta=1 \quad, \quad 1+\boldsymbol{\operatorname { t a n }}^{2} \theta=\boldsymbol{\operatorname { s e c }}^{2} \theta \\
1+\boldsymbol{\operatorname { c o t }}^{2} \theta=\csc ^{2} \theta
\end{array}
$$

The pythagorean identities can also be expressed as radicals

Even/Odd Identities

$$
\begin{array}{lll}
\hline \sin (-x)=-\sin x & \tan (-x)=-\tan x & \text { (odd) } \\
\cot (-x)=-\cot x & \csc (-x)=-\csc x & \text { (odd) } \\
\cos (-x)=\cos x & \sec (-x)=\sec x & \text { (even) }
\end{array}
$$

Cofunction Identities

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-u\right)=\boldsymbol{\operatorname { c o s }} u & \cos \left(\frac{\pi}{2}-u\right)=\boldsymbol{\operatorname { s i n }} u \\
\boldsymbol{\operatorname { t a n }}\left(\frac{\pi}{2}-u\right)=\boldsymbol{\operatorname { c o t }} u & \cot \left(\frac{\pi}{2}-u\right)=\boldsymbol{\operatorname { t a n }} u \\
\boldsymbol{\operatorname { s e c }}\left(\frac{\pi}{2}-u\right)=\boldsymbol{\operatorname { c s c }} u & \csc \left(\frac{\pi}{2}-u\right)=\boldsymbol{\operatorname { s e c }} u
\end{array}
$$

Ex: If $\sec \boldsymbol{u}=-\mathbf{5} / \mathbf{3}$ and $\boldsymbol{\operatorname { t a n }} \boldsymbol{u}>\mathbf{0}$, find the values of the other five trigonometric functions.
Ex: Show that this is not an identity

$$
\boldsymbol{\operatorname { t a n }}^{2} \theta-1=\sec ^{2} \theta
$$

Ex: Verify the identity $\frac{\sec ^{2} \theta-1}{\sec ^{2} \theta}=\sin ^{2} \theta$
Ex: Verify the identity $2 \sec ^{2} \beta=\frac{1}{1-\sin \beta}+\frac{1}{1+\sin \beta}$

Solving Trigonometric Equations

A solution to any equation is any value that can be plugged in for the variable(s) that make the equation true, basically making one side equal to the other.

Ex: Find all the solutions to
a. $\cos x=1$
b. $\boldsymbol{\operatorname { c o s }} x=0$
C. $\cos x=-1 / 2$

Solving cosx =a

1. If $-1<a<1$ and $a \neq 0$, the solution set is

$$
\{x \mid x=s+2 k \pi\}, \text { where } s=\cos ^{-1} a
$$

2. The solution set to $\cos \mathrm{X}=1$ is $\{x \mid x=2 k \pi\}$
3. The solution set to $\cos \mathbf{X}=0$ is $\{x \mid x=\pi / 2+k \pi\}$
4. The solution set to cos $\mathrm{X}=-1$ is $\{x \mid x=\pi+2 k \pi\}$
5. If $|a|>1$, then $\cos x=a$ has NO solution.

Ex: Find all the solutions to $\boldsymbol{\operatorname { s i n }} x=-1 / 2$

Solving $\sin x=a$

1. If $-1<a<1, a \neq 0$ and $s=\sin ^{-1} a$ the solution set is

$$
\{x \mid x=s+2 k \pi\} \text { for } s>0 \text { and }\{x \mid x=\pi-s+2 k \pi\} \text { for } s<0 .
$$

2. The solution set to $\sin \mathrm{x}=1$ is $\{x \mid x=\pi / 2+k \pi\}$
3. The solution set to $\sin \mathrm{x}=0$ is $\{x \mid x=k \pi\}$
4. The solution set to $\sin \mathrm{x}=-1$ is $\{x \mid x=3 \pi / 2+k \pi\}$
5. If $|a|>1$, then $\sin \mathrm{x}=\mathrm{a}$ has NO solution.

Solving $\tan x=a$

If a is any real number and $s=\tan ^{-1} a$, then the solution set to $\tan \mathrm{x}=\mathrm{a}$ is $\{x \mid x=s+k \pi\}$ for $\mathrm{s} \geq 0$, and $\{x \mid x=s+\pi+2 k \pi\}$ for $\mathrm{s}<0$.

Ex: Find all the solutions to $\sin 2 \theta=\frac{\sqrt{2}}{2}$
Ex: Find all the solutions to $\boldsymbol{\operatorname { t a n }} 3 x=\sqrt{3}$
Ex: Find all the solutions in the interval $[0,2 \pi]$ to $\boldsymbol{\operatorname { s i n }} 2 x=\boldsymbol{\operatorname { s i n }} x$
Ex: Find all the solutions to $6 \cos ^{2} x-7 \cos x+2=0$
Ex: Find all the solutions in the interval $\left[0,360^{\circ}\right]$ that satisfy the equation $\boldsymbol{\operatorname { t a n }} 3 y+1=\sqrt{2} \boldsymbol{\operatorname { s e c }} 3 y$

Solving Trigonometric equations

1. Know the solutions to $\sin x=a, \cos x=a, \tan x=a$.
2. Solve an equation involving multiple angles as if it had a single variable.
3. Simplify complicated equations by using identities. Try to get and equations with a single trigonometric function.
4. If possible use factoring and the zero product property.
5. Square each side of the equation if necessary, so you can use identities with squares.
