Trigonometry

Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

```
\alpha (alpha), \beta (beta), \theta (theta)
```

as well as upper case letters A,B, and C

The **measure of an angle** is determined by the **amount of rotation** from the initial side to the terminal side.

Degree Measure

The amount of rotation in an angle with measure one **degree**, denoted by 1[°], is equivalent to the rotation in 1/360 of an entire circle about the vertex.

a full revolution = 360[°] a half of a revolution = 180[°] a quarter of a revolution = 90[°] and so on....

The most common angles you will see are multiples of 30°, 45°, and 60°

Radian Measure

Another way to measure angles is in **radians**, which is useful in calculus. To define we use a central angle of a circle, one whose vertex is in the center of the circle

Definition:

One **radian** is the measure of a central angle θ that intercepts an arc **s** equal in length to the radius **r** of a circle.

In general, the radian measure of a central angle θ is obtained be dividing the arc length *s* by *r*, that is $s/r = \theta$ measured in radians.

Since the circumference of a circle is $2\pi r$ the arclength s (of the entire circle) is $2\pi r$. Because $2\pi \approx 6.28$, there are just over six radius lengths in a full circle.

One full revolution has radian measure of 2π

a half of a revolution = $\frac{2\pi}{2} = \pi$ radians a quarter of a revolution = $\frac{2\pi}{4} = \frac{\pi}{2}$ radians a sixth of a revolution = $\frac{2\pi}{6} = \frac{\pi}{3}$ radians

Conversions between Degrees and Radians

- **1.** Convert **Degrees to Radians**: multiply degrees by $\frac{\pi}{180^{\circ}}$
- **2.** Convert Radians to Degrees: multiply radians by $\frac{180^{\circ}}{100}$

Remember: we do not write the units for radian measure

The Unit Circle:

The unit circle is a circle centered at the origin with radius 1 so the equation of this circle would be $x^2 + y^2 = 1$. We use this circle to help us define the six trigonometric functions.

We start by working with the two most basic trigonometric functions the **sine of** θ , written as, **sin**(θ) or **sin** θ and **cosine of** θ written as **cos**(θ) or **cos** θ , where θ is an angle in standard position.

If θ is an angle in standard position and (x,y) is the point of intersection of the terminal side and the unit circle, then $\sin\theta = y$ and $\cos\theta = x$

The domain of both sine and cosine is the set of all angles in standard position or $(-\infty,\infty)$ and the range for each is [-1,1]

There are four other trigonometric functions. They are tangent (tan), cotangent (cot), secant (sec), and cosecant (csc). These can also be defined using the unit circle.

If θ is an angle in standard position and (x,y) is the point of intersection of the terminal side and the unit circle, we define the tangent, cotangent, secant, and cosecant as

$$\tan \theta = \frac{y}{x}, \ \cot \theta = \frac{x}{y}, \ \sec \theta = \frac{1}{x}, \ \csc \theta = \frac{1}{y}$$

Since these functions are equal to fractional values we need to restrict the domains to keep the denominators from being zero.

Since $\sin\theta = y$ and $\cos\theta = x$ we can rewrite each of the previous in terms of sine and cosine

$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \ \cot \theta = \frac{\cos \theta}{\sin \theta}, \ \sec \theta = \frac{1}{\cos \theta}, \ \csc \theta = \frac{1}{\sin \theta}$$

again providing that the denominator is not zero.

Θ degrees	0 °	30 °	45 °	60 °	90°	180 °	270 [°]
Θ radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
sin Θ	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	- 1
cos Θ	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1⁄2	0	- 1	0
tan Θ	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undefined	0	Undefined

Signs of the trigonometric functions in the four quadrants.

- Both *x* and *y* are positive in the first quadrant, all six functions are positive in the first quadrant.
- Only *y* is positive in the second quadrant, only sine and cosecant are positive in the second quadrant.
- Both *x* and *y* are negative in the third quadrant, only tangent and cotangent are positive in the third quadrant.
- Only *x* is positive in the fourth quadrant, only cosine and secant are positive in the fourth quadrant.

Definitions of Trigonometric Functions of any angle

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$.

$$\sin\theta = \frac{y}{r} \qquad \qquad \csc\theta = \frac{r}{y} \quad y \neq 0$$
$$\cos\theta = \frac{x}{r} \qquad \qquad \sec\theta = \frac{r}{x} \quad x \neq 0$$
$$\tan\theta = \frac{y}{x} \quad x \neq 0 \qquad \qquad \cot\theta = \frac{x}{y} \quad y \neq 0$$

Ex: Let (4, -3) be on the terminal side of θ . Find the value of the sine, cosine, and tangent of θ .

Ex: Given $\cos \theta = 3/5$ and $\tan \theta < 0$, find $\sin \theta$.

Right Triangles

Hypotenuse (hyp) - side connecting angle theta and other non right angle **Opposite (opp)** - side connecting right angle and other non right angle **Adjacent (adj)** - side connecting theta and right angle

Pythagorean Theorem:

$$a^{2} + b^{2} = c^{2} \text{ or } (opp)^{2} + (adj)^{2} = (hyp)^{2}$$

The Six Trigonometric Functions and Right Triangles

Let θ be an acute angle of a right triangle, the six trig functions of the angle θ are defined as follows:

$$\sin\theta = \frac{opp}{hyp}$$
 $\csc\theta = \frac{hyp}{opp}$

 $\cos\theta = \frac{adj}{hyp}$ $\sec\theta = \frac{hyp}{adj}$ $\tan\theta = \frac{opp}{adj}$ $\cot\theta = \frac{adj}{opp}$

opp = the length of the side *opposite* θ **adj** = the length of the side *adjacent to* θ **hyp** = the length of the *side that does not touch the 90[°] angle* Look at right triangles: $45^{\circ}, 45^{\circ}, 90^{\circ}$ and $30^{\circ}, 60^{\circ}, 90^{\circ}$ And evaluate the six trig functions for each theta.

Trigonometric Identities

We use trig. identities to:

- 1. Evaluate trig. functions
- 2. Simplify trig. expressions
- 3. Develop additional trig. identities
- 4. Solve trig. Equations

Reciprocal Identities

$$\sin\theta = \frac{1}{\csc\theta} \qquad \cos\theta = \frac{1}{\sec\theta} \qquad \tan\theta = \frac{1}{\cot\theta}$$
$$\csc\theta = \frac{1}{\sin\theta} \qquad \sec\theta = \frac{1}{\cos\theta} \qquad \cot\theta = \frac{1}{\tan\theta}$$

Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} , \quad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
, $1 + \tan^2 \theta = \sec^2 \theta$
 $1 + \cot^2 \theta = \csc^2 \theta$

The pythagorean identities can also be expressed as radicals

Even/Odd Identities

sin(-x) = -sin x	tan (-x) = - tan x	(odd)
$\cot(-x) = -\cot x$	$\csc(-x) = -\csc x$	(odd)
$\cos(-x) = \cos x$	$\sec(-x) = \sec x$	(even)

Cofunction Identities

$$\sin\left(\frac{\pi}{2}-u\right) = \cos u \qquad \cos\left(\frac{\pi}{2}-u\right) = \sin u$$
$$\tan\left(\frac{\pi}{2}-u\right) = \cot u \qquad \cot\left(\frac{\pi}{2}-u\right) = \tan u$$
$$\sec\left(\frac{\pi}{2}-u\right) = \csc u \qquad \csc\left(\frac{\pi}{2}-u\right) = \sec u$$

Ex: If sec u = -5/3 and tan u > 0, find the values of the other five trigonometric functions.

Ex: Show that this is not an identity $\tan^2 \theta - 1 = \sec^2 \theta$ Ex: Verify the identity $\frac{\sec^2 \theta - 1}{\sec^2 \theta} = \sin^2 \theta$ Ex: Verify the identity $2\sec^2 \beta = \frac{1}{1 - \sin \beta} + \frac{1}{1 + \sin \beta}$

Solving Trigonometric Equations

A **solution** to any equation is any value that can be plugged in for the variable(s) that make the equation true, basically making one side equal to the other.

Ex: Find all the solutions to

a. $\cos x = 1$ **b.** $\cos x = 0$ **C.** $\cos x = -1/2$

Solving cosx = a

1. If -1 < a < 1 and $a \neq 0$, the solution set is $\{x | x = s + 2k\pi\}$, where $s = \cos^{-1}a$ **2.** The solution set to $\cos x = 1$ is $\{x | x = 2k\pi\}$ **3.** The solution set to $\cos x = 0$ is $\{x | x = \pi/2 + k\pi\}$ **4.** The solution set to $\cos x = -1$ is $\{x | x = \pi + 2k\pi\}$ **5.** If |a| > 1, then $\cos x = a$ has **NO** solution.

Ex: Find all the solutions to $\sin x = -1/2$

<u>Solving sinx = a</u>

If -1 < a < 1, a ≠ 0 and s = sin⁻¹a the solution set is {x|x = s + 2kπ} for s > 0 and {x|x = π - s + 2kπ} for s < 0.
 The solution set to sinx = 1 is {x|x = π/2 + kπ}
 The solution set to sinx = 0 is {x|x = kπ}
 The solution set to sinx = -1 is {x|x = 3π/2 + kπ}
 If |a| > 1, then sinx = a has NO solution.

Solving tanx = a

If *a* is any real number and $s = \tan^{-1}a$, then the solution set to $\tan x = a$ is $\{x | x = s + k\pi\}$ for $s \ge 0$, and $\{x | x = s + \pi + 2k\pi\}$ for s < 0.

- **Ex:** Find all the solutions to $\sin 2\theta = \frac{\sqrt{2}}{2}$
- **Ex:** Find all the solutions to $\tan 3x = \sqrt{3}$
- **Ex:** Find all the solutions in the interval $[0, 2\pi]$ to $\sin 2x = \sin x$
- **Ex:** Find all the solutions to $6\cos^2 x 7\cos x + 2 = 0$
- **Ex:** Find all the solutions in the interval [0,360⁰] that satisfy the equation $\tan 3y + 1 = \sqrt{2} \sec 3y$

Solving Trigonometric equations

- 1. Know the solutions to sinx = a, cosx = a, tanx = a.
- 2. Solve an equation involving multiple angles as if it had a single variable.
- 3. Simplify complicated equations by using identities. Try to get and equations with a single trigonometric function.
- 4. If possible use factoring and the zero product property.
- 5. Square each side of the equation if necessary, so you can use identities with squares.