The Natural Logarithmic Function: Differentiation

Objective: Develop and use properties of the natural logarithmic function. Understand the definition of the number *e*. Find derivatives of functions involving the natural logarithmic function.

Recall
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
, $n \neq -1$

Definition of the Natural Logarithmic Function

The natural logarithmic function is defined by

$$\ln x = \int_{1}^{x} \frac{1}{t} dt \qquad x > 0$$

The domain of the natural logarithmic function is the set of all positive real numbers.

Properties of the Natural Logarithmic Function

The natural logarithmic function has the following properties.

- **1.** The domain if $(0,\infty)$ and the range is $(-\infty,\infty)$.
- 2. The function is continuous, increasing, and one-to-one.
- **3.** The graph is concave down.

Logarithmic Properties

If *a* and *b* are positive numbers and *n* is rational, then the following properties are true.

a> 2

1. ln(1) = 0

- **2.** $\ln(ab) = \ln a + \ln b$
- **3.** $\ln(a^n) = n \ln a$
- **4.** $\ln(a / b) = \ln a \ln b$

Ex: Expand

a.
$$\ln 5x^3\sqrt{3x+2}$$
 b. $\ln \frac{(x^2+3)^2}{x\sqrt[3]{x^2+1}}$

The Number e

e is the base for the natural logarithm, e = 2.71828182...

Definition of e

The letter e denotes the positive real number such that

$$\ln e = \int_1^e \frac{1}{t} dt = 1$$

The Derivative of the Natural Logarithmic Function		
Let u be a differentiable function of x.		
1. $\frac{d}{dx}[\ln x] = \frac{1}{x}, x > 0$ 2. $\frac{d}{dx}[\ln u] = \frac{1}{u}\frac{du}{dx} = \frac{u'}{u}, u > 0$		
Ex: a. $\frac{d}{dx}[\ln(5x)]$ b. $\frac{d}{dx}[\ln(5x^2+2)]$ c. $\frac{d}{dx}[x^2 \ln x]$ d. $\frac{d}{dx}[(\ln x^2)^4]$		
Ex: Differentiate $f(x) = \ln \sqrt{5x^2 + 2}$		
Ex: Differentiate $f(x) = \ln \frac{x(2-x^2)^3}{\sqrt{5x^4-3}}$		
Ex: Find the derivative of $y = \frac{(x-3)^2}{\sqrt{x^3+2}}, x \neq 3$		
Derivative Involving Absolute Value		
If u is a differentiable function of x such that $u \neq 0$, then		
$\frac{d}{dx} \left[\ln \left u \right \right] = \frac{u'}{u}$		

Ex: Find the derivative of $f(x) = \ln |\cos x|$

The Natural Logarithmic Function: Integration

Objective: Use the Log Rule for Integration to integrate a rational function. Integrate trigonometric functions.

The differentiation rules: $\frac{d}{dx} [\ln |x|] = \frac{1}{x}$ and $\frac{d}{dx} [\ln |u|] = \frac{u'}{u}$

Log Rule for Integration

Let *u* be a differentiable function of x

1.
$$\int \frac{1}{x} dx = \ln |x| + C$$
 2. $\int \frac{1}{u} du = \ln |u| + C$

Because du = u'dx the second formula can be written as

$$\int \frac{u'}{u} dx = \ln |u| + C \quad \text{or} \quad \int \frac{du}{u} = \ln |u| + C$$

Ex: Evaluate

a.
$$\int \frac{2}{x} dx$$
 b. $\int \frac{1}{3x-2} dx$

Ex: Find the area of the region bounded by the graph $y = \frac{2x}{x^2 + 3}$, the x-axis, and the line x = 3.

Ex: **a.**
$$\int \frac{4x^3 + 1}{x^4 + x} dx$$
 b. $\int \frac{\csc^2 x}{\cot x} dx$ **c.** $\int \frac{x + 1}{x^2 + 2x} dx$ **d.** $\int \frac{1}{3x + 2} dx$
e. $\int \frac{x^3 + 2x^2 - x + 1}{x^2 + 1} dx$ (use long division first) **f.** $\int \frac{2x}{(x + 1)^2} dx$

Guidelines for Integration

- **1.** Learn a basic list of integration formulas.
- 2. Find an integration formula that resembles all or part of the integrand, and, by trial and error, find a choice for u that will make the integrand conform to the formula.
- **3.** If you can't find a u-substitution that works, try altering the integrand. Try a trigonometric identity, multiplication or division. Be creative.
- **4.** If you have access to computer software that will find the antiderivative symbolically, use it.

Ex: Find $\int \tan x dx$

Ex: Find $\int \sec x dx$

Integrals of the Six Basic Trig Functions

1. $\int \sin u du = -\cos u + C$	$2. \int \cos u du = \sin u + C$
$3. \int \tan u du = -\ln \left \cos u \right + C$	$4. \int \cot u du = \ln \left \sin u \right + C$
$5. \int \sec u du = \ln \left \sec u + \tan u \right + C$	$6. \int \csc u du = -\ln \left \csc u + \cot u \right + C$

Ex: Evaluate: $\int_0^{\pi/4} \sqrt{1 + \tan^2 x} dx$

Exponential Functions: Differentiation and Integration

Objective: Develop properties of the natural exponential function. Differentiate natural exponential functions. Integrate natural exponential functions.

Definition of the Natural Exponential Function The inverse function of the natural logarithmic function $f(x) = \ln x$ is called the natural exponential function and is denoted by $f^{-1}(x) = e^x$ that is, $y = e^x$ if and only if $x = \ln y$ Recall: $\ln(e^x) = x$ and $e^{\ln x} = x$ **Ex:** Solve $7 = e^{x+1}$

Remember your exponent rules!

Properties of the Natural Exponential Function

1. The domain of $f(x) = e^x$ is $(-\infty, \infty)$, and the range is $(0, \infty)$ **2.** The function $f(x) = e^x$ is continuous, increasing, and one-to-one on its entire domain.

- **3.** The graph of $f(x) = e^x$ is concave upward on its entire domain.
- **4.** $\lim e^x = 0$ and $\lim e^x = \infty$ $x \rightarrow \infty$

Derivative of the Natural Exponential Function

Let u be a differentiable function of x.

1.
$$\frac{d}{dx}[e^x] = e^x$$
 2. $\frac{d}{dx}[e^u] = e^u \frac{du}{dx}$

Ex: a.
$$\frac{d}{dx}[e^{5x+3}]$$
 b. $\frac{d}{dx}[e^{(-3+x)/x}]$ **c.** $\frac{d}{dx}[x^3e^{x^2}]$

Integration Rules for Exponential Functions
Let u be a differentiable function of x.
1.
$$\int e^x dx = e^x + C$$
 2. $\int e^u du = e^u + C$

Ex: Find
$$\int e^{5x+1} dx$$

Ex: a. $\int \frac{e^{1/x}}{x^2} dx$ b. $\int \cos x e^{\sin x} dx$ c. $\int \frac{5x^2}{e^{x^3}} dx$ d. $\int \frac{e^{3x} - 3e^{2x} + e^x}{e^{2x}} dx$
Ex: Evaluate each definite integral

a.
$$\int_0^1 \frac{1}{e^x} dx$$
 b. $\int_0^1 \frac{e^x}{1+e^x} dx$ **c.** $\int_{-1}^0 [e^x \sin(e^x)] dx$