
Solving Systems of Linear DE by Elimination 
Solution of a System: A solution of a system of differential equations 
is a set of differentiable functions x = f(t), y = g(t), z = h(t), and so on that 
satisfies each equation of the system on some interval I. 
 

Systematic Elimination: the elimination of an unknown in a system of 
linear differential equations is expedited by rewriting each equation on 
the system in differential operator notation 
Recall  
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where the ai, i = 0,1…,n are constants can be written as 
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If the nth order differential operator factors into differential operators of 
lower order, then the factors commute. 
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Can be rewritten as 
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Method of Solution: 
Consider the system of linear first order DE 
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� We can eliminate y by operating the first equation by D  and 
multiplying the second by -3. 

� We can solve the resulting auxiliary equation and get a solution for 
x(t) 

� We could also go back and eliminate x and find a solution for y(t) 
� The next step is to find what values of c1,c2,c3,c4 satisfy the 

system. Plug x(t) and y(t) back into one of the original equations 
and simplify the number of parameters. 
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Using Determinants: 
Symbolically if L1, L2, L3, and L4 denote linear differential operators with constant 
coefficients, then a system of linear differential equations in two variables x and y 
can be written as  
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Eliminating variables we would get 
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If we use Cramers rule: 
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The left hand determinant in each equation can be expanded in the usual sense. 
However the right hand one need a little more attention. We need to exand the 
determinant by actually have the differential operators actually operating on the 
functions g1 and g2.  
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0≠≠≠≠  and is a differential operator of order n, then 

• The system can be uncoupled into two nth order differential equations in x 
and y 

• The characteristic equation and hence the complimentary function of each of 
these differential operators are the same 

• Since x and y both contain n constants, there are a total of 2n contants 
appearing 

• The total number of independent constants in the solution of the system in n 
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then, the system may have a solution containing any number of independent 
constants or may have no solution at all. 
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