Solving Systems of Linear DE by Elimination

Solution of a System: A solution of a system of differential equations is a set of differentiable functions $x=f(t), y=g(t), z=h(t)$, and so on that satisfies each equation of the system on some interval I.
Systematic Elimination: the elimination of an unknown in a system of linear differential equations is expedited by rewriting each equation on the system in differential operator notation
Recall

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=g(t)
$$

where the $\mathrm{a}_{\mathrm{i}}, \mathrm{i}=0,1 \ldots, \mathrm{n}$ are constants can be written as

$$
\left(a_{n} D^{n}+a_{n-1} D^{(n-1)}+\ldots+a_{1} D+a_{0}\right) y=g(t)
$$

If the nth order differential operator factors into differential operators of lower order, then the factors commute. Ex:

$$
\begin{aligned}
x^{\prime \prime}+2 x^{\prime}+y^{\prime \prime} & =x+3 y+\sin t \\
x^{\prime}+y^{\prime} & =-4 x+2 y+e^{-t}
\end{aligned}
$$

Can be rewritten as

$$
\begin{aligned}
& x^{\prime \prime}+2 x^{\prime}-x+y^{\prime \prime}-3 y=\sin t \rightarrow\left(D^{2}+2 D-1\right) x+\left(D^{2}-3\right) y=\sin t \\
& x^{\prime}+4 x+y^{\prime}-2 y=e^{-t} \quad(D-4) x+(D-2) y=e^{-t}
\end{aligned}
$$

Method of Solution:

Consider the system of linear first order DE

$$
\begin{array}{ll}
\frac{d x}{d t}=3 y & D x-3 y=0 \\
\frac{d y}{d t}=2 x & \text { or equivalently } \\
2 x-D y=0
\end{array}
$$

- We can eliminate y by operating the first equation by D and multiplying the second by -3 .
- We can solve the resulting auxiliary equation and get a solution for $x(t)$
- We could also go back and eliminate x and find a solution for $y(t)$
- The next step is to find what values of $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{C}_{4}$ satisfy the system. Plug $x(t)$ and $y(t)$ back into one of the original equations and simplify the number of parameters.

Ex: Solve $D x+(D+2) y=0$

$$
(D-3) x-2 y=0
$$

Ex: Solve $x^{\prime}-4 x+y^{\prime \prime}=t^{2}$

$$
x^{\prime}+x+y^{\prime}=0
$$

Using Determinants:

Symbolically if L_{1}, L_{2}, L_{3}, and L_{4} denote linear differential operators with constant coefficients, then a system of linear differential equations in two variables x and y can be written as

$$
\begin{aligned}
& L_{1} x+L_{2} y=g_{1}(t) \\
& L_{3} x+L_{4} y=g_{2}(t)
\end{aligned}
$$

Eliminating variables we would get

$$
\left(L_{1} L_{4}-L_{2} L_{3}\right) x=f_{1}(t) \text { and }\left(L_{1} L_{4}-L_{2} L_{3}\right) x=f_{2}(t)
$$

Where

$$
f_{1}(t)=L_{4} g_{1}(t)-L_{2} g_{2}(t) \text { and } f_{2}(t)=L_{1} g_{2}(t)-L_{3} g_{1}(t)
$$

If we use Cramers rule:

$$
\left|\begin{array}{ll}
\boldsymbol{L}_{1} & \boldsymbol{L}_{2} \\
\boldsymbol{L}_{3} & \boldsymbol{L}_{4}
\end{array}\right| \boldsymbol{x}=\left|\begin{array}{ll}
\boldsymbol{g}_{1} & \boldsymbol{L}_{2} \\
\boldsymbol{g}_{2} & \boldsymbol{L}_{4}
\end{array}\right| \text { and }\left|\begin{array}{ll}
\boldsymbol{L}_{1} & \boldsymbol{L}_{2} \\
\boldsymbol{L}_{3} & \boldsymbol{L}_{4}
\end{array}\right| \boldsymbol{y}=\left|\begin{array}{ll}
\boldsymbol{L}_{1} & \boldsymbol{g}_{1} \\
\boldsymbol{L}_{3} & \boldsymbol{g}_{2}
\end{array}\right|
$$

The left hand determinant in each equation can be expanded in the usual sense. However the right hand one need a little more attention. We need to exand the determinant by actually have the differential operators actually operating on the functions g_{1} and g_{2}.
If $\left|\begin{array}{ll}\boldsymbol{L}_{1} & \boldsymbol{L}_{2} \\ \boldsymbol{L}_{3} & \boldsymbol{L}_{4}\end{array}\right| \neq 0$ and is a differential operator of order n, then

- The system can be uncoupled into two nth order differential equations in x and y
- The characteristic equation and hence the complimentary function of each of these differential operators are the same
- Since x and y both contain n constants, there are a total of $2 n$ contants appearing
- The total number of independent constants in the solution of the system in n

If $\left|\begin{array}{ll}\boldsymbol{L}_{1} & \boldsymbol{L}_{2} \\ \boldsymbol{L}_{3} & \boldsymbol{L}_{4}\end{array}\right|=0$
then, the system may have a solution containing any number of independent constants or may have no solution at all.
Ex: Solve $\begin{aligned} & x^{\prime}=3 x-y-1 \\ & y^{\prime}=x+y+4 e\end{aligned}$

$$
y^{\prime}=x+y+4 e^{t}
$$

