Sequences and Series

Sequence:

An ordered list of numbers, called terms. The terms of a sequence are often arranged in a pattern.

- $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ are the terms of the sequence and
- a_{n} is the nth term

A sequence is usually defined as a function whose domain is the set of positive integers but, it's easier to denote a sequence in subscript form rather than function notation.

Infinite Sequence:

Has three dots ($\ldots \rightarrow$ called an ellipsis) at its end. This indicates that the sequence goes on forever, or continues without end.

Explicit Formula (general term):

A formula that defines the $n^{\text {th }}$ term, or general term, of a sequence; with an explicit formula, each term of the sequence can be found by substituting the number of the term for \boldsymbol{n}.

Expressing a Sequence

a. $\left\{a_{n}\right\}=\left\{3+(-1)^{n}\right\}$
b. $\left\{b_{n}\right\}=\left\{\frac{n}{1-2 n}\right\}$
c. a recursively defined sequence $\left\{c_{n}\right\}$, where $c_{1}=25$ and $c_{n+1}=c_{n}-5$.

Ex: Find the explicit form of a sequence whose first four terms are
a. $\{2,4,6,8, \ldots\}$
b. $\left\{1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8} \ldots\right\}$

Series:

If $a_{1}, a_{2}, a_{3}, \ldots a_{n}, \ldots$ is a sequence, the the expression

$$
a_{1}+a_{2}+a_{3}+\ldots a_{n}+\ldots
$$

is called a series.
If the sequence is finite then the corresponding series is finite if the sequence is infinite then corresponding series is infinite.

Summation Notation:

Also called Sigma Notation, is a way to express a series in abbreviated form. It is denoted by the Greek letter sigma, $\boldsymbol{\Sigma}$
$\sum_{k=1}^{4} a_{k}=a_{1}+a_{2}+a_{3}+a_{4} \mathrm{k}$ is the index of the series

Ex: Find the $\operatorname{sum} \sum_{k=1}^{4} 2 k+3$

Summation Properties:

For sequences $\boldsymbol{a}_{\boldsymbol{k}}$ and $\boldsymbol{b}_{\boldsymbol{k}}$ and positive integer \boldsymbol{n} :

1. $\sum_{k=1}^{n} \mathbf{c} a_{k}=c \sum_{k=1}^{n} a_{k}$
2. $\sum_{k=1}^{n}\left(\mathbf{a}_{k}+b_{k}\right)=\sum_{k=1}^{n} \mathbf{a}_{k}+\sum_{k=1}^{n} \mathbf{b}_{k}$

Summation Formulas:

For all positive integers n :

1. Constant Series: $\sum_{k=1}^{n} \mathbf{c}=\mathbf{n c}$
2. Linear Series: $\sum_{k=1}^{n} k=\frac{\mathbf{n}(\mathbf{n}+\mathbf{1})}{\mathbf{2}}$
3. Quadratic Series: $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$

Ex: Find the sum
a. $\sum_{k=1}^{7} 3$
b. $\sum_{k=1}^{5} k$
c. $\sum_{k=1}^{4} 2 k+3$
d. $\sum_{k=1}^{100} k^{2}+k+1$

Arithmetic and Geometric Sequences and Series

Arithmetic Sequence:

Sequence whose successive terms differ by the same number, d, called the common difference.

$$
a_{n}-a_{n-1}=d \text { or } a_{n}=a_{n-1}+d
$$

$n^{\text {th }}$ Term of an Arithmetic Sequence:

The general term, a_{n}, of an arithmetic sequence whose $1^{\text {st }}$ term is a_{1} and whose common difference is \boldsymbol{d} is given by the explicit formula

$$
a_{n}=a_{1}+d(n-1)
$$

Geometric Sequence:

A sequence in which the ratio of successive terms is the same number, r, called the common ratio.

$$
\frac{a_{n}}{a_{n-1}}=r \text { or } a_{n}=r a_{n-1}
$$

$n^{\text {th }}$ Term of a Geometric Sequence:

The $\boldsymbol{n}^{\text {th }}$ term, $\boldsymbol{a}_{\boldsymbol{n}}$, of a geometric sequence whose $1^{\text {st }}$ term is $\mathbf{a}_{\boldsymbol{1}}$ and whose common ration is r is given by the explicit formula $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{\boldsymbol{1}} \bullet r^{\boldsymbol{n - 1}}$, where $\mathbf{n} \geq 1$.

Ex: Label the following as a geometric, arithmetic sequences, both, or neither. If geometric or arithmetic write the formula for the nth term.
a. $\{2,3,5,7,9,10 \ldots\}$
b. $\{-5,-3,-1,1, \ldots\}$
c. $\{5,5,5,5, \ldots\}$
d. $\{2,-4,8,-16, \ldots\}$

Arithmetic Series:

The indicated sum of the terms of an arithmetic sequence.

Sum of the First \boldsymbol{n} Terms of a finite Arithmetic Series:

The sum, $\boldsymbol{S}_{\boldsymbol{n}}$, of the first \boldsymbol{n} terms of an arithmetic series with a first term of $\mathbf{a}_{1} \& \mathrm{n}^{\text {th }}$ term $\boldsymbol{a}_{\boldsymbol{n}}$ is given by:

$$
\mathbf{S}_{\mathbf{n}}=\mathbf{n}\left(\frac{a_{1}+a_{\mathbf{n}}}{2}\right)
$$

Ex: Find the sum of the first 52 terms of an arithmetic series if the first term is 23 and the common difference is -2 .

Ex: Find the sum of all the even numbers between -23 and 53 .

Geomtric Series:

The indicated sum of the terms of an geometric sequence.

Sum of the $1^{\text {st }} \boldsymbol{n}$ Terms of a finite Geometric Series:

The sum, $\boldsymbol{S}_{\boldsymbol{n}}$, of the $1^{\text {st }} \boldsymbol{n}$ terms of a geometric series is given by:

$$
\mathbf{S}_{\mathbf{n}}=a_{1}\left(\frac{1-\mathbf{r}^{\mathbf{n}}}{1-\mathbf{r}}\right)
$$

where \boldsymbol{a}_{1} is the $1^{\text {st }}$ term, \boldsymbol{r} is the common ratio, $\boldsymbol{r} \neq 1$.
Ex: Find the sum of the first 15 terms of a geometric series whose first term is 1 and $r=3$.

Ex: Find the sum of $\sum_{k=1}^{7} 2\left(3^{k}\right)$

Sum of an INFINITE Geometric Series where \boldsymbol{a}_{1} is the $1^{\text {st }}$ term, \boldsymbol{r} is the common ratio and $|r|<1$.

$$
S_{n}=\frac{a_{1}}{1-r}
$$

If $|r| \geq 1$ then the infinite geometric series diverges (the sum is infinite).
Ex: Find the sum of $\sum_{k=1}^{\infty} 2\left(3^{k}\right)$

