Sequence:

An ordered list of numbers, called **terms**. The terms of a sequence are often arranged in a pattern.

- $a_1, a_2, a_3, \dots a_n$ are the **terms** of the sequence and
- a_n is the **nth term**

A sequence is usually defined as a function whose domain is the set of positive integers but, it's easier to denote a sequence in subscript form rather than function notation.

Infinite Sequence:

Has three dots ($\dots \rightarrow$ called an ellipsis) at its end. This indicates that the sequence goes on forever, or continues without end.

Explicit Formula (general term):

A formula that defines the n^{th} term, or general term, of a sequence; with an explicit formula, each term of the sequence can be found by substituting the number of the term for n.

Expressing a Sequence

a. {
$$a_n$$
 } = {3 + (-1)ⁿ} **b.** { b_n } = { $\frac{n}{1-2n}$ }

c. a **recursively defined** sequence $\{c_n\}$, where $c_1 = 25$ and $c_{n+1} = c_n - 5$.

Ex: Find the explicit form of a sequence whose first four terms are

a.
$$\{2,4,6,8,...\}$$
 b. $\{1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8}...\}$

<u>Series:</u>

If a_1 , a_2 , a_3 , ..., a_n ,... is a sequence, the the expression

$$a_1 + a_2 + a_3 + \dots a_n + \dots$$

is called a series.

If the sequence is finite then the corresponding series is finite if the sequence is infinite then corresponding series is infinite.

Summation Notation:

Also called **Sigma Notation**, is a way to express a **series** in abbreviated form. It is denoted by the Greek letter sigma, Σ

$$\sum_{k=1}^{4} a_k = a_1 + a_2 + a_3 + a_4$$
 k is the index of the series

Ex: Find the sum
$$\sum_{k=1}^{4} 2k + 3$$

Summation Properties:

For sequences a_k and b_k and positive integer n:

1.
$$\sum_{k=1}^{n} c a_{k} = c \sum_{k=1}^{n} a_{k}$$

2. $\sum_{k=1}^{n} (a_{k} + b_{k}) = \sum_{k=1}^{n} a_{k} + \sum_{k=1}^{n} b_{k}$

Summation Formulas:

For all positive integers *n*:

- **1.** Constant Series: $\sum_{k=1}^{n} c = nc$
- 2. Linear Series: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- 3. Quadratic Series: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

Ex: Find the sum

a.
$$\sum_{k=1}^{7} 3$$
 b. $\sum_{k=1}^{5} k$ **c.** $\sum_{k=1}^{4} 2k + 3$ **d.** $\sum_{k=1}^{100} k^2 + k + 1$

Arithmetic and Geometric Sequences and Series Arithmetic Sequence:

Sequence whose successive terms differ by the same number, **d**, called the **common difference**.

$$a_n - a_{n-1} = d$$
 or $a_n = a_{n-1} + d$

*n*th Term of an Arithmetic Sequence:

The general term, a_n , of an arithmetic sequence whose 1^{st} term is a_1 and whose common difference is **d** is given by the <u>explicit formula</u>

$$a_n = a_1 + d(n-1)$$

Geometric Sequence:

A sequence in which the <u>ratio</u> of successive terms is the same number, *r*, called the **common ratio**.

$$\frac{a_n}{a_{n-1}} = r$$
 or $a_n = ra_{n-1}$

*n*th Term of a Geometric Sequence:

The n^{th} term, a_n , of a geometric sequence whose 1st term is a_1 and whose common ration is r is given by the <u>explicit formula</u> $a_n = a_1 \bullet r^{n-1}$, where $n \ge 1$.

Ex: Label the following as a geometric, arithmetic sequences, both, or neither. If geometric or arithmetic write the formula for the nth term.

a. {2, 3, 5, 7, 9, 10...} **b.** {-5, -3, -1, 1, ...} **c.** {5, 5, 5, 5, ...} **d.** {2, -4, 8, -16,...}

Arithmetic Series:

The indicated **sum** of the terms of an arithmetic sequence.

Sum of the First *n* Terms of a finite Arithmetic Series:

The sum, S_n , of the first *n* terms of an arithmetic series with a first term of $a_1 \& n^{\text{th}}$ term a_n is given by:

$$\mathbf{S}_{\mathbf{n}} = \mathbf{n} \left(\frac{a_1 + a_{\mathbf{n}}}{2} \right)$$

Ex: Find the sum of the first 52 terms of an arithmetic series if the first term is 23 and the common difference is -2.

Ex: Find the sum of all the even numbers between -23 and 53.

Geomtric Series:

The indicated **sum** of the terms of an geometric sequence.

Sum of the 1st *n* Terms of a <u>finite</u> Geometric Series: The sum, S_n , of the 1st *n* terms of a geometric series is given by:

$$\mathbf{S}_{\mathbf{n}} = a_1 \left(\frac{1 - \mathbf{r}^{\mathbf{n}}}{1 - \mathbf{r}} \right)$$

where a_1 is the 1st term, r is the common ratio, $r \neq 1$.

Ex: Find the sum of the first 15 terms of a geometric series whose first term is 1 and r = 3.

Ex: Find the sum of
$$\sum_{k=1}^{7} 2(3^k)$$

Sum of an <u>INFINITE</u> Geometric Series where a_1 is the 1st term, r is the common ratio and |r| < 1.

$$S_n = \frac{a_1}{1-r}$$

If $|r| \ge 1$ then the infinite geometric series diverges (the sum is infinite).

Ex: Find the sum of $\sum_{k=1}^{\infty} 2(3^k)$