Review of Topics in Algebra and Pre-Calculus

I. Introduction to Functions

A function f from a set A to a set B is a relation that assigns to each element x in the set A exactly one element y in set B . The set A is the domain of f and the set B contains the range (or set of outputs).

Characteristics of a function from set A to set B

1. Each element in A must be matched with an element in B.
2. Some elements in B may not be matched with any element in A.
3. Two or more elements in A may be matched with the same element in B .
4. An element in A (the domain) cannot be matched with two different elements in B .

II. Function Notation

We name a function so that it can be referenced. Name the function f. Since we say y is a function of x, replace y with $f(x)$. Now, if we need to know the value of y in the function f when x equals a, we just have to write $f(a)$. This value is read " f of a."
Tip: There are two concepts that we cannot emphasize too much. One is that $y=f(x)$. The other is that f is the name of the function, not a variable.
Ex 1:. Given $f(x)=x^{2}-4 x$, find the following.
a) $f(2)$
b) $f(4 a)$
c) $f(x-2)$
d) $f(x+h)$

Ex 2: Evaluate when $\mathrm{x}=-1,0,1$

$$
f(x)= \begin{cases}x^{2}+1, & x<0 \\ x-1, & x \geq 0\end{cases}
$$

III. The Domain of a Function

The implied domain of a function is the set of all x such that the corresponding y is a real number. At least for a while, we will only consider three situations,

1. Polynomials domain is $(-\infty, \infty)$.
2. Fractions x cannot be any number in the domain that makes the denominator zero.
3. Radicals x if the index is even, then the radicand must be nonnegative.
Ex: Find the domains of the following functions.
a) $f(x)=x^{3}+3 x+1$
b) $f(x)=\frac{1}{x^{2}-1}$
c) $f(x)=\sqrt{x-2}$

IV. The Difference Quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

Ex: Find the Difference Quotient for
a) $f(x)=3 x+2$
b) $f(x)=x^{2}+2 x-1$
c) $f(x)=6 x^{2}+x$

Tip: try to eliminate the h in the denominator
In calculus we see what happens when $\mathrm{h} \rightarrow 0$

Graph of a Function: the graph of a function f consists of all points (x, y) where x is the domain of f and $y=f(x)$; that is, all points of the form ($x, f(x)$)

Intercepts:

The points (if any) where the graph crosses the x axis are called the \mathbf{x} - intercepts
The point where the graph crosses the y axis is called the y - intercept
How to find the intercepts:
Y int: let x equal zero
X int: let y or $f(x)$ equal zero
Ex: Find the intercepts of $f(x)=-x^{2}+x+2$

Graphing Parabolas (quadratic functions)

1. Vertex $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$
2. Intercepts
3. Open up or down

Power Functions, Polynomials, and Rational

functions:

Power functions: any function of the form $f(x)=x^{n}$ where n is a real number
Polynomial functions: any function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots+a_{1} x^{1}+a_{0} x^{0}
$$

where n is a nonnegative integer and a_{n} etc are constants
Rational Functions: any function of the form $\frac{p(x)}{q(x)}$ where p and q are polynomials

Vertical Line Test

A curve is a graph of a function if and only if no vertical line intersects the curve more than once.

Linear Functions

A function whose value changes at a constant rate with respect to its independent variable is called a Linear Function.
Linear functions are any functions of the form:

$$
\begin{gathered}
f(x)=a_{1} x+a_{0} \\
\quad \text { or } \\
f(x)=m x+b
\end{gathered}
$$

The graph of a linear function is a straight line.
The steepness of a line can be measured by the slope represented whit the letter \mathbf{m}.

$$
m=\frac{\text { changein } y}{\text { changein } x}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The slope of the line determines the direction of the line.

Slope Intercept Form of the Equation of a Line

 Given the slope of a line m and the y intercept $(0, b)$ the equation of the line can be found using the equation:$$
y=m x+b
$$

Point Slope Form of the Equation of a Line

Given the slope of a line m and a point on a line (x_{1}, y_{1}) the equation of the line can be found using the equation:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Parallel and Perpendicular Lines

Let \mathbf{m}_{1} and $\mathbf{m}_{\mathbf{2}}$ be the slopes of the nonvertical lines $\mathrm{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ then:
L_{1} and L_{2} are parallel if and only if $\mathbf{m}_{1}=\mathbf{m}_{\mathbf{2}}$
L_{1} and L_{2} are perpendicular if and only if $\mathbf{m}_{2}=-$

Exponential and Logarithmic Functions

The exponential function $f(x)$ with base a is denoted by

$$
f(x)=a^{x}
$$

where $a>0, a \neq 1$, and x is any real number.
Since the exponential function $f(x)=a^{\mathbf{x}}$ is one-to-one, its inverse is a function. The function given by

$$
\begin{gathered}
f(x)=\log _{a} x \\
\text { where } x>0, a>0 \text {, and } a \neq 1 \\
\text { is called the logarithmic function with base a. }
\end{gathered}
$$

Furthermore, the logarithmic function with base a is the inverse of the exponential function with base a; thus
$y=\log _{a} x$ if and only if $x=a^{y}$
(the two statements are equivalent)
Properties of a logarithmic function

1. $\log _{a} 1=0$ because $a^{0}=1$
2. $\log _{a} a=1$ because $a^{1}=a$
3. $\log _{a} a^{x}=x$ and $a^{\log _{a} x}=x \quad$ Inverse Property
4. If $\log _{a} x=\log _{a} y$, then $x=y$. One to one Property
5. $\log _{a}(u v)=\log _{a} u+\log _{a} v$
6. $\ln (u / v)=\operatorname{In} u-\operatorname{In} v$
7. $\log _{a} u=n \log _{a} u$

Trigonometric Functions

Let θ be an acute angle of a right triangle, the six trig functions of the angle θ are defined as follows:

$$
\begin{array}{ll}
\boldsymbol{\operatorname { s i n }} \theta=\frac{o p p}{h y p} & \boldsymbol{\operatorname { c s c }} \theta=\frac{h y p}{o p p} \\
\boldsymbol{\operatorname { c o s }} \theta=\frac{a d j}{h y p} & \boldsymbol{\operatorname { s e c }} \theta=\frac{h y p}{a d j} \\
\boldsymbol{\operatorname { t a n }} \theta=\frac{o p p}{a d j} & \boldsymbol{\operatorname { c o t }} \theta=\frac{a d j}{o p p}
\end{array}
$$

Remember your special triangles!!!!

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r=\sqrt{x^{2}+y^{2}} \neq 0$.

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} y \neq 0 \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \quad x \neq 0 \\
\tan \theta=\frac{y}{x} x \neq 0 & \cot \theta=\frac{x}{y} \quad y \neq 0
\end{array}
$$

Trigonometric Identities

Reciprocal Identities

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

Second, from the original definitions and the reciprocal identities, we have the Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Finally, from the Pythagorean Theorem, $(\mathrm{opp})^{2}+(\mathrm{adj})^{2}=(\mathrm{hyp})^{2}$, and dividing both sides of the equation by (hyp) ${ }^{2}$, we have the Pythagorean Identities.

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \quad, \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

Note: $(\sin \theta)^{2}=\sin ^{2} \theta \ldots$ etc.

