Review of Topics in Algebra and Pre-Calculus

I. Introduction to Functions

A **function** *f* from a set A to a set B is a relation that assigns to each element *x* in the set A exactly one element *y* in set B. The set A is the domain of *f* and the set B contains the range (or set of outputs).

Characteristics of a function from set A to set B

- **1.** Each element in A must be matched with an element in B.
- **2.** Some elements in B may not be matched with any element in A.
- **3.** Two or more elements in A may be matched with the same element in B.

4. An element in A (the domain) cannot be matched with two different elements in B.

II. Function Notation

We name a function so that it can be referenced. Name the function f. Since we say y is a function of x, replace ywith f(x). Now, if we need to know the value of y in the function f when x equals a, we just have to write f(a). This value is read "f of a."

Tip: There are two concepts that we cannot emphasize too much. One is that y = f(x). The other is that *f* is the *name* of the function, not a variable.

Ex 1:. Given $f(x) = x^2 - 4x$, find the following. **a)** f(2) **b)** f(4a) **c)** f(x-2) **d)** f(x + h)

Ex 2: Evaluate when x = -1, 0, 1

$$f(x) = \begin{cases} x^2 + 1, \ x < 0\\ x - 1, \ x \ge 0 \end{cases}$$

III. The Domain of a Function

The implied domain of a function is the set of all x such that the corresponding y is a real number. At least for a while, we will only consider three situations,

- **1.** Polynomials domain is $(-\infty, \infty)$.
- **2.** Fractions x cannot be any number in the domain that makes the denominator zero.
- **3.** Radicals x if the index is even, then the radicand must be nonnegative.
- Ex: Find the domains of the following functions.

a)
$$f(x) = x^3 + 3x + 1$$
 b) $f(x) = \frac{1}{x^2 - 1}$ **c)** $f(x) = \sqrt{x - 2}$

IV. The Difference Quotient

$$\frac{f(x+h) - f(x)}{h}$$

Ex: Find the Difference Quotient for

a)
$$f(x) = 3x + 2$$

b) $f(x) = x^2 + 2x - 1$
c) $f(x) = 6x^2 + x$

Tip: try to eliminate the h in the denominator In calculus we see what happens when $h \rightarrow 0$ **<u>Graph of a Function</u>**: the graph of a function *f* consists of all points (x,y) where x is the domain of *f* and y = f(x); that is, all points of the form (x, f(x))

Intercepts:

The points (if any) where the graph crosses the x axis are called the x - intercepts

The point where the graph crosses the y axis is called the **y** – **intercept**

How to find the intercepts:

Y int: let x equal zero X int: let y or f(x) equal zero

Ex: Find the intercepts of $f(x) = -x^2 + x + 2$

Graphing Parabolas (quadratic functions)

- **1.** Vertex $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$
- 2. Intercepts
- 3. Open up or down

Power Functions, Polynomials, and Rational functions:

Power functions: any function of the form $f(x) = x^n$ where n is a real number

Polynomial functions: any function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 x^0$$

where n is a nonnegative integer and a_n etc are constants

Rational Functions: any function of the form $\frac{p(x)}{q(x)}$ where p and q are polynomials

Vertical Line Test

A curve is a graph of a function if and only if no vertical line intersects the curve more than once.

Linear Functions

A function whose value changes at a constant rate with respect to its independent variable is called a **Linear Function**.

Linear functions are any functions of the form:

$$f(x) = a_1 x + a_0$$

or
$$f(x) = mx + b$$

The graph of a linear function is a **straight line**.

The steepness of a line can be measured by the **<u>slope</u>** represented whit the letter **m**.

$$m = \frac{change in y}{change in x} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

The slope of the line determines the direction of the line.

Slope Intercept Form of the Equation of a Line

Given the slope of a line m and the y intercept (0,b) the equation of the line can be found using the equation:

$$y = mx + b$$

Point Slope Form of the Equation of a Line

Given the slope of a line m and a point on a line (x_1,y_1) the equation of the line can be found using the equation:

$$y - y_1 = m(x - x_1)$$

Parallel and Perpendicular Lines

Let \mathbf{m}_1 and \mathbf{m}_2 be the slopes of the nonvertical lines \mathbf{L}_1 and \mathbf{L}_2 then:

 L_1 and L_2 are parallel if and only if $m_1 = m_2$

 L_1 and L_2 are perpendicular if and only if $m_2 = -$

Exponential and Logarithmic Functions The exponential function f(x) with base a is denoted by

$$f(x) = a^x$$

where a > 0, $a \neq 1$, and x is any real number.

Since the exponential function $f(x) = a^x$ is one-to-one, its inverse is a function. The function given by

$$f(x) = \log_a x$$

where x > 0, a > 0, and $a \neq 1$ is called the **logarithmic function with base** a.

Furthermore, the logarithmic function with base *a* is the inverse of the exponential function with base *a*; thus

 $y = \log_a x$ if and only if $x = a^y$

(the two statements are equivalent)

Properties of a logarithmic function 1. $\log_a 1 = 0$ because $a^0=1$

1. $\log_a 1 = 0$ because $a^0=1$ 2. $\log_a a = 1$ because $a^1 = a$ 3. $\log_a a^x = x$ and $a^{\log_a x} = x$ Inverse Property 4. If $\log_a x = \log_a y$, then x = y. One to one Property 5. $\log_a(uv) = \log_a u + \log_a v$ 6. $\ln(u/v) = \ln u - \ln v$ 7. $\log_a u^n = n \log_a u$

Trigonometric Functions

Let θ be an acute angle of a right triangle, the six trig functions of the angle θ are defined as follows:

$$\sin \theta = \frac{opp}{hyp}$$
 $\csc \theta = \frac{hyp}{opp}$ $\cos \theta = \frac{adj}{hyp}$ $\sec \theta = \frac{hyp}{adj}$ $\tan \theta = \frac{opp}{adj}$ $\cot \theta = \frac{adj}{opp}$

Remember your special triangles!!!!

Let θ be an angle in standard position with (*x*, *y*) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$.

$$\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{r}{y} \quad y \neq 0$$
$$\cos \theta = \frac{x}{r} \qquad \qquad \sec \theta = \frac{r}{x} \quad x \neq 0$$
$$\tan \theta = \frac{y}{x} \quad x \neq 0 \qquad \qquad \cot \theta = \frac{x}{y} \quad y \neq 0$$

Trigonometric Identities Reciprocal Identities

$$\sin \theta = \frac{1}{\csc \theta} \qquad \cos \theta = \frac{1}{\sec \theta} \qquad \tan \theta = \frac{1}{\cot \theta}$$
$$\csc \theta = \frac{1}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta} \qquad \cot \theta = \frac{1}{\tan \theta}$$

Second, from the original definitions and the reciprocal identities, we have the **Quotient Identities**

$$\tan \theta = \frac{\sin \theta}{\cos \theta} , \quad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Finally, from the Pythagorean Theorem, $(opp)^{2} + (adj)^{2} = (hyp)^{2}$, and dividing both sides of the equation by $(hyp)^{2}$, we have the **Pythagorean Identities.**

$$\sin^2 \theta + \cos^2 \theta = 1$$
, $1 + \tan^2 \theta = \sec^2 \theta$
 $1 + \cot^2 \theta = \csc^2 \theta$

Note: $(\sin\theta)^2 = \sin^2\theta \dots etc.$