Rational Functions

Section Objectives: Students will know how to determine the domains, find the asymptotes, and sketch the graphs of rational functions.

A rational function is a function of the form

$$
f(x)=\frac{N(x)}{D(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1} \ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1} \ldots+b_{1} x+b_{0}}
$$

where $N(x)$ and $D(x)$ are both polynomials. The domain of $f(x)$ is all x such that $\boldsymbol{D}(\boldsymbol{x}) \neq \mathbf{0}$.
Ex: Find the domain of $f(x)=\frac{1}{x}$.

Definitions of Asymptotes

- The line $y=b$ is a horizontal asymptote of the graph of $f(x)$ if $f(x) \rightarrow b$ as $x \rightarrow-\infty$ or $x \rightarrow \infty$
- The line $x=a$ is a vertical asymptote of the graph of $f(x)$ if $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ as $x \rightarrow a$, either from the right or from the left.

Rules for Asymptotes of Rational Functions.

Let $\boldsymbol{f}(\boldsymbol{x})$ be a rational function given by

$$
f(x)=\frac{N(x)}{D(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1} \ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1} \ldots+b_{1} x+b_{0}}
$$

where $\mathbf{N}(\mathbf{x})$ and $\mathbf{D}(\mathbf{x})$ have no common factors

1. The graph of $\boldsymbol{f}(\boldsymbol{x})$ has vertical asymptote's at the zeros of $\boldsymbol{D}(\boldsymbol{x})$

- if $N(x)$ and $D(x)$ have common factors then $f(x)$ will only have vertical asymptotes at the x values that are zeros of $D(x)$ but not $N(x)$. If $N(x)$ and $D(x)$ have common zeros then this will result in a different kind of discontinuity, a hole in the graph.

2. The graph of f has one horizontal asymptote or no horizontal asymptote, depending on the degree of $\boldsymbol{N}(\boldsymbol{x})$ and $\boldsymbol{D}(\boldsymbol{x})$. Let n be the degree of $N(x)$ and m be the degree of $D(x)$.
a. If $\boldsymbol{n}<\boldsymbol{m}$, then $\boldsymbol{y}=\mathbf{0}$ is the horizontal asymptote of the graph of $f(x)$.
b. If $\boldsymbol{n}=\boldsymbol{m}$, then $\boldsymbol{y}=a_{n} / b_{m}$ is the horizontal asymptote of the graph of $f(x)$.
c. If $\boldsymbol{n}>\boldsymbol{m}$, then there is no horizontal asymptote of the graph of $f(x)$.

Ex: Find any horizontal and vertical asymptotes of the following.
a) $f(x)=\frac{2 x}{3 x^{2}+1}$
b) $f(x)=\frac{2 x^{2}}{x^{2}-1}$
c) $f(x)=\frac{x^{2}+1}{x}$

Analyzing Graphs of Rational Functions

Let $f(x)=\frac{N(x)}{D(x)}$, where $\mathbf{N}(\mathbf{x})$ and $\mathbf{D}(\mathbf{x})$ are polynomial with no common factors.

1. Find the zero's of the denominator (if any) by solving the equation $\mathbf{D}(\mathbf{x})=\mathbf{0}$, then sketch the corresponding vertical asymptotes.
2. Find and sketch the horizontal asymptote (if any) by using the rules for finding the horizontal asymptote of a rational function.
3. Find and plot the \mathbf{y}-intercept (if any) by evaluating $\mathrm{f}(0)$.
4. Find the zero's of the numerator (if any) by solving the equation $\mathbf{N}(\mathbf{x})=\mathbf{0}$, then plot the corresponding \mathbf{x} - intercepts.
5. Plot check points, at least one point between and one point beyond each x - intercept and vertical asymptote.
6. Use smooth curves to complete the graph between and beyond the vertical asymptote.
Sketch the graph of the following rational functions
a) $f(x)=\frac{3}{x-2}$
b) $g(x)=\frac{2 x-1}{x}$
c) $h(x)=\frac{x}{x^{2}-x-2}$
d) $a(x)=\frac{2\left(x^{2}-9\right)}{x^{2}-4}$

Slant Asymptotes (oblique asymptotes)

If the degree of the numerator is exactly one more than the degree of the denominator, then the graph has a

slant (or oblique) asymptote

To find the slant asymptote: perform the division of the rational function and find the quotient. Set the quotient equal to y and this will give you the equation of the slant asymptote.
Ex: Find the Slant Asymptote of $f(x)=\frac{x^{2}-x}{x-1}$
Reasoning for this procedure: As $x \rightarrow \infty$ or $x \rightarrow-\infty$ the remainder goes to zero and the graph approaches the quotient.
Ex: Graph $f(x)=\frac{x^{2}-x-2}{x-1}$

What if the numerator and denominator do have common factors? You should:

- cancel out those common factors and graph following the procedure that was described earlier for graphing simplified rational functions
- then go back and set the factors that were canceled out of the original rational function equal to zero. Where those x-values would hit the graph will be represented by holes in the graph.
Ex: $f(x)=\frac{x-2}{x^{2}-4}$

