Rational Functions

Section Objectives: Students will know how to determine the domains, find the asymptotes, and sketch the graphs of rational functions.

A rational function is a function of the form

$$f(x) = \frac{N(x)}{D(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} \dots + b_1 x + b_0}$$

where N(x) and D(x) are both polynomials. The domain of f(x) is all x such that $D(x) \neq 0$.

Ex: Find the domain of $f(x) = \frac{1}{x}$

Definitions of Asymptotes

- The line y = b is a **horizontal asymptote** of the graph of f(x)if $f(x) \rightarrow b$ as $x \rightarrow -\infty$ or $x \rightarrow \infty$
- The line x = a is a **vertical asymptote** of the graph of f(x) if $f(x) \to \infty$ or $f(x) \to -\infty$ as $x \to a$, either from the right or from the left.

Rules for Asymptotes of Rational Functions.

Let **f**(**x**) be a rational function given by

$$f(x) = \frac{N(x)}{D(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} \dots + b_1 x + b_0}$$

where **N(x)** and **D(x)** have no common factors

- 1. The graph of *f(x)* has *vertical* asymptote's at the zeros of *D(x)*
 - if N(x) and D(x) have common factors then f(x) will only have vertical asymptotes at the x values that are zeros of D(x) but not N(x). If N(x) and D(x) have common zeros then this will result in a different kind of discontinuity, a hole in the graph.
- 2. The graph of *f* has one *horizontal* asymptote or no horizontal asymptote, depending on the degree of *N(x)* and *D(x)*. Let n be the degree of N(x) and m be the degree of D(x).
 - a. If n < m, then y = 0 is the horizontal asymptote of the graph of f(x).
 - **b.** If n = m, then $y = a_n / b_m$ is the **horizontal asymptote** of the graph of f(x).
 - c. If n > m, then there is no horizontal asymptote of the graph of f(x).

Ex: Find any horizontal and vertical asymptotes of the following.

a)
$$f(x) = \frac{2x}{3x^2 + 1}$$
 b) $f(x) = \frac{2x^2}{x^2 - 1}$ **c)** $f(x) = \frac{x^2 + 1}{x}$

Analyzing Graphs of Rational Functions

Let $f(x) = \frac{N(x)}{D(x)}$, where **N(x)** and **D(x)** are polynomial with no common

factors.

- Find the zero's of the denominator (if any) by solving the equation D(x) = 0, then sketch the corresponding vertical asymptotes.
- 2. Find and sketch the horizontal asymptote (if any) by using the rules for finding the horizontal asymptote of a rational function.
- 3. Find and plot the y-intercept (if any) by evaluating f(0).
- 4. Find the zero's of the numerator (if any) by solving the equation N(x) = 0, then plot the corresponding x intercepts.
- Plot check points, at least one point between and one point beyond each x – intercept and vertical asymptote.
- 6. Use smooth curves to complete the graph between and beyond the vertical asymptote.

Sketch the graph of the following rational functions

a)
$$f(x) = \frac{3}{x-2}$$
 b) $g(x) = \frac{2x-1}{x}$ c) $h(x) = \frac{x}{x^2-x-2}$
d) $a(x) = \frac{2(x^2-9)}{x^2-4}$

Slant Asymptotes (oblique asymptotes)

If the degree of the numerator is exactly one more than the degree of the denominator, then the graph has a

slant (or oblique) asymptote

To find the slant asymptote: perform the division of the rational function and find the quotient. Set the quotient equal to y and this will give you the equation of the slant asymptote.

Ex: Find the Slant Asymptote of $f(x) = \frac{x^2 - x}{x - 1}$

Reasoning for this procedure: As $x \to \infty$ or $x \to -\infty$ the remainder goes to zero and the graph approaches the quotient.

Ex: Graph $f(x) = \frac{x^2 - x - 2}{x - 1}$

What if the numerator and denominator do have common factors? You should:

- cancel out those common factors and graph following the procedure that was described earlier for graphing simplified rational functions
- then go back and set the factors that were canceled out of the original rational function equal to zero. Where those x-values would hit the graph will be represented by holes in the graph.

Ex:
$$f(x) = \frac{x-2}{x^2-4}$$