Plane Curves, Parametric Equations, and Polar Coordinates:

Until now we have been representing a graph by a single equation involving two variables. Here we begin to study situations in which three variables are used to represent a curve in the rectangular coordinate plane.

Suppose an object is propelled into the air at an angle of 45°. The path can be given by a function, $y=f(x)$. This equation does not give you the entire story. It tells you where a given object is and the path it traveled, but it does not tell you when the object was at a given point.

If a particle is moving along a curve C in the plane, we can describe the particle's motion by specifying its coordinates as function of time t :

$$
x=f(t), \quad y=g(t) .
$$

In other words, at time t, the particle is located at point

$$
c(t)=(f(t), g(t)) .
$$

The first set of equations are called the parametric equations, and C is called the parametric curve, or plane curve. We refer to $c(t)$ as a parametrization with parameter t.

Since x and y are functions of t, we often write $c(t)=(f(t), g(t))$ instead of $(f(t), g(t))$.

Curve Sketching:

To sketch a parametric curve by hand plot the points (x, y) determined from a value chosen for the parameter t. By plotting the resulting points in order of increasing value of t the curve is traced out in a specific direction. This is called the orientation of the curve.

Ex: Sketch the curve with parametric equations

$$
x=2 t-4 \text { and } y=3+t^{2} .
$$

Eliminating the Parameter:

A parametric curve $c(t)$ need not be the graph of a function. If it is, however, it may be possible to find the function $f(x)$ by "eliminating the parameter".

Ex: Describe the curve of the previous example $c(t)=\left(2 t-4,3+t^{2}\right)$ in the form of $y=f(x)$.

Common Parametrizations:

Two of the most common parametrizations that we common across are lines and circles.

Parametrization of a Line

The line through $P=(a, b)$ of slope m is parametrized by

$$
x=a+r t, \quad y=b+s t \quad-\infty<t<\infty
$$

For any r and s such that $m=s / r$ and $r \neq 0$.
Ex: Find the parametric equations for the line through $P=(3,-1)$ with slope $m=4$.

Ex: Find the parametric equations for the line through the points $(1,2)$ and $(-5,3)$.

Parametrization of a Circle:

The circle of radius R and center (a, b) oriented counterclockwise is parametrized by

$$
x=a+R \cos \theta, \quad y=b+R \sin \theta
$$

Parametrization of a circle of radius R with center (a, b).

Where θ varies over a half open interval of length 2π such as $[0,2 \pi)$.
For an ellipse centered at (a, b) the parametrization would be

$$
x=a+R \cos \theta, y=b+S \sin \theta
$$

where $S \neq R$.

Ex: Sketch the curve represented by $x=3 \cos \theta$ and $y=4 \cos \theta, 0 \leq x \leq 2 \pi$ then eliminate the parameter and find the corresponding rectangular equation.

Some interesting parametrizations:

$x(t)=t-\sin t, y(t)=1-\cos t$

The parametric curve $x=5 \cos (3 t) \cos \left(\frac{2}{3} \sin (5 t)\right), y=4 \sin (3 t) \cos \left(\frac{2}{3} \sin (5 t)\right)$.

Parametric Equations and Calculus

Parametric Form of a Derivative:

If a smooth curve C is given by the equations $x=f(t)$ and $y=g(t)$, then the slope of C at (x, y) is

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}, \quad \frac{d x}{d t} \neq 0
$$

Ex: Find the equation of the tangent line for the curve given by $x=\sin t$ and $y=\cos t$ when $\mathrm{t}=\pi$.

Polar Coordinates

Polar coordinates (r, θ) of a point (x, y) in the Cartesian plane are another way to plot a graph. The r represents the distance you move away from the origin and θ represents an angle in standard position.

To convert from rectangular to polar

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& \theta=\arctan (y / x)
\end{aligned}
$$

To convert from polar to rectangular

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Ex: Convert (3, -3) to polar coordinates

Ex: Convert $\left(2, \frac{2 \pi}{3}\right)$ to rectangular coordinates

Ex: Convert the rectangular equation $x^{2}+y^{2}=1$ to polar coordinates.

Ex: Find the polar equation of the line through the origin with slope $m=3 / 2$.

$\frac{a}{b}<1$
Limaçon with inner loop

$r=a \cos n \theta$ Rose curve

$r=a \cos \theta$
Circle

$\frac{a}{b}=1$
Cardioid
(heart-shaped)

$r=a \cos n \theta$
Rose curve

$r=a \sin \theta$
Circle

$1<\frac{a}{b}<2$
Dimpled limaçon

$r=a \sin n \theta$ Rose curve

$r^{2}=a^{2} \sin 2 \theta$
Lemniscate

$\frac{a}{b} \geq 2$
Convex limaçon

$r=a \sin n \theta$ Rose curve

$r^{2}=a^{2} \cos 2 \theta$
Lemniscate

