MAT 107 TEST \#3 REVIEW G.BUTHUSIEM

Find the focus and the directrix of the parabola.

1. $y=-2 x^{2}-16 x-31$

Find the equation of the parabola determined by the given information.
2. Vertex at the origin, focus at $(0,-5)$

Find the focus and the directrix of the parabola.
3. $y=-2 x^{2}-20 x-49$

Write the equation for the circle described.
4. Center at $(5,4)$, radius 3

Identify the equation as a parabola, ellipse, or circle.
5. $9 x^{2}+4 y^{2}=36$
6. $7 y^{2}+3 x^{2}=3-x$

Find the foci and asymptotes of the hyperbola.
7. $\frac{x^{2}}{64}-\frac{y^{2}}{36}=1$

Use completing the square to rewrite the equation in one of the standard forms for a conic and identify the conic.
8. $x^{2}+y^{2}+4 x-6 y+1=0$
9. $x^{2}+14 x-y+42=0$

Write a formula for the nth term of the infinite sequence. Do not use a recursion formula.
10. $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots$

Find the sum of the series.
11. $\sum_{i=1}^{5}(3 i-2)$

Find the requested sum of the series.

$$
\text { 12. } \sum_{i=1}^{8616} i
$$

Find the common ratio for the geometric sequence.

$$
\text { 13. } 3,6,12,24,48
$$

Find the sum of the geometric series.
14. $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256}$

Identify the sequence as arithmetic, geometric, or neither.
15. $2,8,32,128,512, \ldots$

Determine if the given sequence could be an arithmetic sequence.
16. $0,3,6,9,12, \ldots$

Use completing the square to rewrite the equation in one of the standard forms for a conic and identify the conic. 17. $7 x^{2}-5 y^{2}-14 x+40 y-108=0$

Identify the equation as a parabola, ellipse, or circle.
18. $x^{2}+y^{2}=36$

Answer Key

Testname: MAT 107 TEST \#3 REVIEW

1. $\left(-4, \frac{7}{8}\right) ; \mathrm{y}=\frac{9}{8}$
2. $y=-\frac{1}{20} x^{2}$
3. $\left(-5, \frac{7}{8}\right) ; y=\frac{9}{8}$
4. $(x-5)^{2}+(y-4)^{2}=9$
5. Ellipse
6. Ellipse
7. $(-10,0),(10,0) ; y=\frac{3}{4} x, y=-\frac{3}{4} x$
8. $(x+2)^{2}+(y-3)^{2}=12$; circle
9. $y=(x+7)^{2}-7$; parabola
10. $a_{n}=\frac{1}{n^{2}}$
11. 35
12. $37,122,036$
13. 2
14. $\frac{341}{256}$
15. Geometric
16. Yes
17. $\frac{(x-1)^{2}}{5}-\frac{(y-4)^{2}}{7}=1$; hyperbola
18. Circle
