
Linear  Differential Equations  of  Higher Order 

Basic Theory: 

Initial-Value  Problems 

Solve: 
1
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Existence of   a  Unique Solution: 

Let an(x), an-1(x), … ,a1(x), a0(x) and g(x) be continuous on an interval I, and let 

an(x) ≠ 0 for every x in this interval. If x = x0 is any point in this interval, then a 

solution y(x) of the initial value problem exists on the interval and is unique. 
 

Ex: Find the solution to 4 10siny y x x′′ + = +   subject to ( ) 0, ( ) 2y yπ π′= =  given that 

1 2cos sin 4 5 cosy c x c x x x x= + + −  is a general solution to the D.E. Is that solution unique? 

 

Boundary Value Problems 

Another type of problem consists of solving a linear DE of order two or greater in which the 

dependent variable y or its derivatives are specified at different points. A problem such as 

Solve: 
2

2 1 02
( ) ( ) ( ) ( )
d y dy

a x a x a x y g x
dx dx

+ + =   

Subject to: 0 0 1 1( ) , ( )y x y y x y= =   

is called a two point boundary value problem or BVP. The prescribed values y(x0) = yO 

and y(x1) = y1 are called boundary conditions. A solution of the foregoing problem is a 

function satisfying the D.E. on some interval I, containing x0 and x1, whose graph passes 

through the two points (x0,y0) and (x1,y1). 
 

Ex: Solve 16 0y y′′ + =  subject to (0) 0, ( / 2) 0y y π= = , given that 1 2cos4 sin4y c x c x= +  is a 

general solution to the D.E. 

 

Difference between  and IVP and BVP: 

• In an IVP all values needed to solve a particular problem are specified at a single 

point (x0) 

• In a BVP all values needed to solve a particular problem are specified at different 

points (x0, x1, etc ) 
 

Linear Dependence and Linear Independence 

A set of functions f1(x), f2(x),…,fn(x) is said to be linearly dependent on an interval 

I if there exists constants c1, c2, … ,cn, not all zero, such that 

1 1 2 2( ) ( )       ...  0( ) n nc f x c f x c f x+ + + =  

for every x in the interval. 

 

If the set of functions is not linearly dependent on the interval, it is said to be 

linearly independent. 
 



In other words a set of functions is linearly independent on an interval I if and only if the 

only constants for which 

1 1 2 2( ) ( )       ...  0( ) n nc f x c f x c f x+ + + =  

for every x in the interval are c1 = c2 = …  = cn = 0 

 

Ex:  Are the functions 1( ) sin 2f x x=  and 2( ) sin cosf x x x=  linearly dependent or 

independent? 
 

Ex: Are the functions 2

1( )g x x=  and 2( ) lng x x= linearly dependent or independent? 
 

Ex: Are the functions 1( ) 5h x x= +  , 2 ( ) 5h x x x= + , 3( ) 1h x x= − and 2

4( )h x x= linearly 

dependent or independent? 

 

Also note that a set of functions f1, f2, f3 ,…, fn is linearly dependent on an interval if at least 

one function can be expressed as a linear combination of the remaining functions. 

 

Solutions of a  D.E. 

We are primarily interested in linearly independent solutions of linear D.E. To determine 

whether a set of solutions of an nth order linear D.E. is linearly independent can be done 

using determinants. 
 

Wronskian: 

Suppose each of the functions f1(x), f2(x), … ,fn(x) possess at least n – 1 derivatives. The 

determinant of 
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is called the Wronskian of  the functions. 
 

Criterion  for Linearly  Independent Functions: 

The set of functions f1(x), f2(x), … ,fn(x) is linearly independent on I if and only if 

W(f1,f2,…,fn)≠ 0 for at least one point in the interval. The converse is also true 

 

Ex: Are the following examples linearly independent? 

A. 2

1 2( ) sin , ( ) 1 cos2f x x f x x= = −   

B. 1 2

1 2 1 2( ) , ( ) ,
m x m x

g x e g x e m m= = ≠   

C. 1 2( ) cos , ( ) sin ,x xh x e x h x e x and are real numbersα αβ β α β= =   

D. 2

1 2 3( ) , ( ) , ( )x x xz x e z x xe z x x e= = =   
 

 



Solutions of linear Differential Equations 

A linear nth order DE of the form  
1

1 1 01
( ) ( ) ... ( ) ( ) 0

n n

n nn n

d y d y dy
a x a x a x a x y

dx dx dx

−

− −+ + + + =  

is said to be homogeneous, whereas an equation  
1

1 1 01
( ) ( ) ... ( ) ( ) ( )

n n

n nn n

d y d y dy
a x a x a x a x y g x

dx dx dx

−

− −+ + + + =  

with g(x) not identically zero, is said to be nonhomogeneous 
 

(The word homogeneous here does not refer to the coefficients that are homogeneous 

functions) 
 

Ex: 2 3 5y y y x′′ ′+ + =  is a nonhomogeneous second order linear differential equation and 

2 3 5 0y y y′′ ′+ + = is the associated homogeneous equation. 
 

For now on we will make the following assumptions when stating definitions and theorems 

about linear equations on some interval I, 

1. The coefficient functions ai(x), i = 0,1,2,…,n are continuous 

2. g(x) is continuous 

3. an(x) ≠≠≠≠ 0 for every x in the interval. 
 

Superposition Principle - Homogeneous Equations: 

Let y1, y2, ... ,yk  be linearly independent solutions of the homogeneous nth order differential 

equation on an interval I, then the linear combination 
y = c1 y1(x) + c2 y2(x) + ...  + ck yk(x), 

where the ci, i = 0,1,2…,k are arbitrary constants, is also solution on the interval, we call this 

the general solution  of the homogeneous D.E. 
 

Any set y1,y2,..., yn  of linearly independent solutions of the homogeneous linear nth order 

differential equation on an interval I is said to be a fundamental set of solutions on the 

interval. 
 

Corollaries to the Superposition  Theorem: 

• A constant multiple y = c1 y1(x) of a solution y1(x) of a homogeneous linear DE is also 

a solution. 

• A homogeneous linear DE always possesses the trivial solution y = 0. 
 

Ex: The functions y1 = x2 and y2 = x2lnx are both solutions of the homogeneous linear 

equation 3 2 4 0x y xy y′′′ ′− + =  on the interval (0,∞). By the superposition principle the 

linear combination 2 2

1 2 lny c x c x x= + is also a solution of the equation on the interval. 

 

 

 

 

 



Nonhomogeneous Linear Differential  Equations 

Any function yp, free of arbitrary parameters, that satisfies a nonhomogeneous 

linear D.E. is said to be a particular solution or particular integral of the 

equation. An easy example would be 3py =  is a particular solution to 9 27y y′′ + = . The 

particle solution isn’t necessary restricted to constants.   
 

Let yp be a given (or particular) solution of the nonhomogeneous linear nth
 
order 

differential equation on the interval I, and let 

yc = c1 y1(x) + c2 y2(x) + ...  + ck yk(x) 

denote the general solution of the associated homogeneous equation on the interval, then 

the  general solution of the nonhomogeneous equation on the interval is defined to be 

y = y
c + y 

p  = c
1 y1 ( x) + c

2 y2 ( x) + ... + c
n yn ( x) + y 

p ( x) 
 

Ex: The nonhomogeneous linear differential equation 6 11 6 3y y y y x′′′ ′′ ′− + − =  has a 

particular solution 
11 1

12 2
py x= − −  and its associated homogeneous equations has a general 

solution 2 3

1 2 3

x x x

cy c e c e c e= + + . Find the general solution to the nonhomogeneous D.E. 
 

Reduction of Order 

If you have a known solution to a second order linear differential equation one interesting 

thing that occurs with these types of equations is that you can use that solution to construct 

a second solution. 

 

Suppose y1 ( x) is a known solution to 2 1 0( ) ( ) ( ) 0a x y a x y a x y′′ ′+ + = . We assume just like 

previously that a2(x) ≠ 0 for every x in some interval I. The process we use to a find a 

second solution y2 ( x) consists of reducing the order of the equation to a first order linear 

D.E., which we already know how to solve, through substitution. 
 

Suppose that y1(x) is a nontrivial solution of the previous D.E. and that y1(x) is defined on I. 

We seek a second solution, y2(x), so that y1(x), y2(x), are a linearly independent on I. If y1(x)  
and y2(x) are linearly independent then the quotient y2(x)/ y1(x), is non-constant that is 

y2(x)/ y1(x)= u(x) or y2(x)= u(x) y1(x). The function u(x) can be found by substituting  

y2(x) = u(x)y1(x) into the given differential equation. 
 

The General  Case 

Suppose we divide 
2 1 0( ) ( ) ( ) 0a x y a x y a x y′′ ′+ + =  by a2(x) in order to put the equation in the 

standard form 
( ) ( ) 0y P x y Q x y′′ ′+ + =  

where P(x) and Q(x) are continuous on some interval I. Let us suppose further that y1(x) is a 

known solution of the standard form on I and that y1(x) ≠ 0 for every x in the interval. If we 

define y(x)= u(x)y1(x) it follows that 

1 1 1 12y uy y u and y uy y u yu′ ′ ′ ′′ ′′ ′ ′ ′= + = + +  

Substituting into the standard form gives 



( ) ( )1 1 1 1 1 12 0

zero

y Py Qy u y Py Qy y u y Py u

=

′′ ′ ′′ ′ ′′ ′ ′+ + = + + + + + =
�������

. 

This implies that we must have 

( )1 12 0y u y Py u′′ ′ ′+ + =  

Through the substitution w u′=  we can turn the previous equation into the following 

homogeneous linear D.E. 

( )1 12 0y w y Py w′ ′+ + =  

Notice this equation is also separable.  

If we separate we get 

1

1

2 0
dw y

dx Pdx
w y

′
+ + =  

Now integrate 
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If we integrate again we can find u(x)  

1

2

1

Pdx

c e
dx

y

−∫
∫  

Lastly substituting into the original form of y2 which was y2(x) = u(x)y1(x) gives 

( )

( )

1
2 1 2

1

( ) ( )
( )

P x dx

c e
y x y x dx

y x

−∫
= ∫  

 

Ex: Given that y1(x) = ex is a solution of 0y y′′ − =  on the interval (-∞,∞). Use the 

reduction of order to find the second solution. 
 

Ex: Given that y1(x) = x3 is a solution of 
2 6 0x y y′′ − = , use the reduction of order to find a 

second solution on the interval (-∞,∞). 
 

Ex: Given that y1(x) = x2 is a solution of 
2 3 4 0x y xy y′′ ′− + = , use the reduction of order to 

find a second solution on the interval (0,∞). 
 

Ex: Given that ( )1

sin x
y x

x
=  is a solution of 

2 2 1
( ) 0

4
x y xy x y′′ ′+ + − = , use the reduction of 

order to find a second solution on the interval (0,∞). 

 

 



Homogeneous Linear  Equations with Constant  Coefficients 

For a linear 1st order D.E. 0y ay′ + = we can see that y = c1eax is a solution. Then we can also 

seek to determine whether exponential solutions exist for higher order equations that have 

constant coefficients. 

 

Auxiliary Equation 

Consider the special case of second order equation 0ay by cy′′ ′+ + =  where a, b, and c are 

constants. If we try to find a solution of the form y = emx then after substituting 
mxy me′ =  and 2 mxy m e′′ =  the original equation becomes 

2
  0

mx mx mxam e bme ce+ + =   or 
2      0( )mxe am bm c+ + =  

since emx ≠  0 for all x, it is apparent the only way y = emx can satisfy the D.E. is if m is chosen 

as a root of the quadratic equation 
2

0am bm c+ + = . This is called the auxiliary equation 

of the differential equation. 
 

Given that there are always two roots m1 and m2 to the quadratic there will be three 

corresponding cases 

1. m1 and m2   are real and distinct (discriminant > 0) 

2. m1 and m2   are real and equal (discriminant = 0) 

3. m1 and m2   are complex conjugate numbers (discriminant < 0) 

 

Case 1: Distinct Real Roots 

Under the assumption that the auxiliary equation has two unequal real roots m1 and m2 , 

we find two solutions, 1     
m x

y e=  and 2     
m x

y e= . We have seen that these functions are linearly 

independent and hence form a fundamental set. Therefore the general solution is 
1 2 

1 2 
m x m x

y c e c e= +  

Case 2:  Repeated Real Roots 

When m1 = m2, we obtain only one exponential solution, 1     
m x

y e=  from the quadratic, that is  

m1 = - b/2a it follows from the reduction of order formula that the second solution is 

( )
1

1 1 1 1

1
1

2( / )

2 2 2
( )

m xb a x
m x m x m x m x

m xm x

e e
y x e dx e dx e dx xe

ee

−

= = = =∫ ∫ ∫ . 

Therefor the general solution is  
1 1

1 2     
m x m x

y c e c xe= + . 

 

Case 3:  Conjugate  Complex  Roots 

If m1 and m2 are complex, then we can write 1m iα β= +  and 2m iα β= − where α  and β  

are real and 
2

1i = − . Formally there is no difference between this and case 1 except that we 

are dealing with complex numbers. So the general solution is 
( ) (         

1 2

)     xi i xy C e C eα αβ β+ −= +   

Usually in practice we prefer to work with real functions so we use Euler’s formula: 

cos sin
ie iθ θ θ= +  

where ϴ is a real number. It follows from this formula that 



cos sini xe x i xβ β β= +  and cos sini xe x i xβ β β− = −  

From this we can see that  

2cosi x i xe e xβ β β−+ =  and 2 sini x i xe e i xβ β β−− =  

Looking back at the original general solution, if we let C1=C2=1 and C1=1 and C2=-1 we 

obtain the two solutions 
( ) ( )

1

i x i xy e eα β α β+ −= +   and ( ) ( )

2

i x i xy e eα β α β+ −= − . 

Using Euler’s formula these become 

1 ( ) 2 cosx i x i x xy e e e e xα β β α β−= + =  and 2 ( ) 2 sinx i x i x xy e e e ie xα β β α β−= − =  

Therefore the general solution 1 1 2 2y c y c y= +  can be written as  

( )1 2 1 2cos sin cos sinx x xy c e x c e x e c x c xα α αβ β β β= + = +  

 

Ex: Solve the following DE's 

a. 5  4   1  2  0y y y′′ ′− − =   

b. 4 4    0y y y′′ ′+ + =   

c.    0y y y′′ ′+ + =   

d.  
2   0y k y′′ + =   where k is a real constant  

 

Higher  Order  Equations 

In general to solve the nth order D.E. where the coefficients are real constants, we 
must solve the nth degree polynomial auxiliary equation 

1 2

1 2 1 0... 0n n

n na m a m a m a m a−
−+ + + + + =

 
Higher order polynomials have the three types of roots as quadratics: distinct real, 

repeated real, and/or complex conjugates. There are just more combinations of how these 

roots can come up.  

If all roots are distinct reals such that 1 2 ... nm m m≠ ≠ ≠   then the general solutions is 

1 2

1 2 ... nm xm x m x

ny c e c e c e= + +  

If there are repeated real roots, say m1 has multiplicity k, then the general solution is  
1 1 1 12 1

1 2 3 ...
m x m x m x m xk

ky c e c xe c x e c x e−= + + + +  

Complex conjugates would also occur the same as before. If a complex conjugate pair is 

repeated then you would for the previous repeated roots example and multiply each pair 

by an ascending power of x until you exhausted the multiplicity.  

Due to the number of roots of a polynomial we can have any combinations of the previous. 

For example a fifth degree equation can have 3 real distinct and 2 complex, 1 distinct real a 

repeated real and a complex conjugate pair, etc.  

 

Ex: Solve 3 2 6 0y y y y′′′ ′′ ′+ + + =   

Ex: Solve 3     5  1  0  4   0y y y y′′′ ′′ ′+ + − =  

Ex: Solve 

4 2

4 2
8 16 0

d y d y
y

dx dx
+ + =   

 

 



Differential  Operators 

In calculus, differentiation can be denoted by the capital letter D that is, dy/dx = Dy. The 

symbol D is called the differential operator because it transforms a differentiable function 

into another function. 
 

Ex:  D(cos4x) = -4sin4x. 
 

Higher order derivatives can be expressed in terms of D as well: 

( )
2

2

2

d dy d y
D Dy D y

dx dx dx

  = = = 
 

 

Where y represents a sufficiently differentiable function. 
 

Polynomial expressions involving D, such as D + 3, D2+ 3D - 4 are also differential 

operators. For example  
2 2 2 2 2( 3)(5 ) ( 3)(5 ) ( 3)( ) (5 ) 15 ( ) 3 15 13 1D x x D x D x D x x D x x x x+ + = + + + = + + + = + +  

 

 In general, we define an nth order differential operator or polynomial operator to be 
1

1 1 0( ) ( ) ... ( ) ( )n n

n nL a x D a x D a x D a x−
−= + + + +  

As a consequence of differentiation two basic properties exist for L: 

1. L(cf(x))= c(L(f(x)), c is a constant 
2. L{f(x) + g(x)} = L(f(x)) + L(g(x)) 

the differential operator L possess a linearity property; that is, L operating on a linear 

combination of two differentiable functions is the same as the linear combination L 

operating on the individual functions. We say L is a linear operator. 
 

Any linear DE can be expressed in terms of D. For example  5    6  5  3y y y x′′ ′+ + = −  can be 

expressed as 
2 2  5 6    5  6    5  ( ) 3D y Dy y D D y x+ + = + + = − . We can write a linear nth order 

differential equations as 

L(y) = 0 or L(y) = g(x) 

The linear differential polynomial operators can also be factored under the same rules as 

polynomial functions. If r1 is a root of L then (D – r1) is a factor or L. The previous example 

could also be written as 
2     5  6   ( 2)( 3)  5 3(  )D D y D D y x+ + = + + = − . 

 

Annihilator Operator 

If L is a linear differential operator with constant coefficients and y = f (x) is a sufficiently 

differentiable function such that  
L(y) = 0 

then L is said to be an annihilator of the function. 
 

For example the constant function y = k is annihilated by D since Dk = 0.  The 

function y = x is annihilated by the differential operator D2 
since D(D(x))=D(1)=0. 

 

The differential operators Dn 
annihilates power functions up to y = xn-1. 

 

As an immediate consequence of this and the fact that differentiation can be done term by 

term, a polynomial  



2 1

1 2 1... n

o nc c x c x c x −
−+ + + +  

can be annihilated by Dn. We often want to find the differential operator of lowest order 

that will annihilate a function. While D5 annihilates x2, D3 is the smallest one. 
 

Ex: Find the differential operator that annihilates
2 3 4

2   6    5 22x x x− + −  . 
 

The differential operator ( )nD α−   annihilates each of the functions 
2 1, , ,...,x x x n xe xe x e x eα α α α−

 
 

This is due to the fact from the previous lesson where if  α is a root of the auxiliary equation

( )nm α−  is a factor and the general solution to the homogenous D.E. is 
2 1

1 2 3 ...x x x n x

ny c e c xe c x e c x eα α α α−= + + + +  

Ex: Find the differential operator that annihilates the given function 

a. 
3 xe−

  b. 
2 2

4   1  0
x xe xe−   

 

The differential operator 
2 2 2[ ( )2 ]nD Dα α β− + +  annihilates each of the functions 

2 1cos   , cos   , cos   , ..., cos  x x x n xe x xe x x e x x e xα α α αβ β β β−
 

2 1sin   , sin   , sin   , ..., sin  x x x n xe x xe x x e x x e xα α α αβ β β β−
 

 

This can be seen by looking at the equation 
2 2 22  [   0( )]nm mα α β− + + =  when α and π are 

real numbers. It has complex roots iα β±  both of multiplicity n found by the quadratic 

formula.  

 

Ex: Find the differential operator that annihilates  
   

5 cos2 9 2
x xe x e sin x− −−   

 

When α = 0 and n = 1 a special case is 

( )2 2
cos

0
sin

x
D

x

β
β

β


+ =


 

 

If we want to annihilate the sum of two or more functions the differential operators 

L1 and L2 of y1 and y2 respectively their product L1L2 will annihilate c1y1 + c2y2 

 

Ex: Find the differential operator that annihilates 7 6sin 4x x− +    

 

Ex: Find the differential operator that annihilates 

a. 
2 3

5
xx xe+ −   

b .
2 x xe xe− +   

c .  
4 2 5
sin3

xx x x e+ −   

 

 

 

 



Undetermined  Coefficients:  Annihilator Approach 

Suppose that L(y) = g(x) is a linear DE with constant coefficients and that g(x) consists of 

finite sums and products of the functions that we have annihilators.  In other words g(x) is 

a linear combination of functions of the form 

k (constant), xm, xmeαx, xmeαxcosβx, and xmeαxsinβx 

where m is a nonnegative integer and α and β are real numbers. We now know that such a 

function g(x) can be annihilated by a differential operator L1 of lowest order consisting of a 

product of the operators nD  , ( )nD α−  , and 2 2 2[ ( )  ]2         nD D αα β− + + .   
 

Applying L1 to both sides of the equation L(y) = g(x) yields  

L1L(y) = L1g(x) = 0. 

By solving the homogeneous higher order equation L1L(y) = 0, we can discover the form of a 

particular solution yp for the original non-homogeneous equation L(y) = g(x).  
 

We then substitute this assumed form into L(y) = g(x) to find the explicit particular solution 

yp. This procedure for determining yp, is called the method of undetermined coefficients. 
 

In previous sections it was stated that the general solution of a non-homogeneous linear DE 

L(y) = g(x) is y = yc + yp, where yc is the general solution of the associated homogeneous 

equation L(y) = 0 and yp is the particular solution of the non-homogeneous equation. Since 

we now know how to find both of these when the coeeficients are constants we can find the 

general solution to a non-homogeneous linear D.E.  
 

Steps  to  Solve Undetermined Coeffieients:  Annihilator Approach   

If the D.E. L(y) = g(x) has constant coefficients, and the function g(x) has an differential 

annihilator then: 

i. Find the complimentary (general) solution yc for the associated homogeneous 

equation L(y) = 0. 

ii. Apply the differential operator L1 that annihilates the function g(x) on both sides of 

the homogeneous equation L(y) = g(x). 

iii. Find the general solution of the associated higher-order homogeneous D.E. L1L(y) = 

0 

iv. Delete from the solution in step(iii) all those terms that are duplicated in the 
complimentary solution yc found in step (i). Form a linear combination yp of the 

terms that remain. This is the form of a particular solution of L(y) = g(x). 

v. Substitute yp found in the step (iv) into L(y) = g(x). Match coefficients of the various 

functions on each side of the equality, and solve the resulting system of equations 

for the unknown coefficients in yp. 

vi. With the particular solution found in step (v), form the general solution y = yc + yp of 

the given D.E. 
 

Ex: Solve 
23   2 4y y y x′′ ′+ + =   

Ex: Solve 
33   8 4sinxy y e x′′ ′− = +   

Ex: Solve   8 5 2 xy y x e−′′+ = +   



Ex: Solve cos cosy y x x x′′ + = −   
 

Ex: Determine the form of a particular solution for 22   10 cosxy y y e x−′′ ′− + =   

Ex: Determine the form of a particular solution for 2 2 2 5 4  4  5  6  4  3x xy y y x x x e e′′′ ′′ ′− + = − + +   
 

The method of undetermined coefficients is not applicable to linear D.E. with variable 

coefficients nor is it applicable to linear equations with constant coefficients when g(x) is a 

function that does not have an annihilator such as  

g(x) = lnx ,  g(x) = 1/x,   g(x) = tanx,  g(x) = sin
-1

x 

 

 

Variation  of  Parameters: 

It can be seen that we can find a particular solution of a linear first-order D.E. of the form 

yp= u1(x)y1(x) on an interval. Where y1(x) is a general solution to the associated 

homogeneous D.E. To adapt this method of Variation of Parameters to a linear second-

order D.E. we begin by putting the equation in standard form. 

   ( ) ( ) ( )y P x y Q x y f x′′ ′+ + =  

For the linear second-order differential equation we seek a particular solution 
yp = u1(x)y1(x) +u2(x)y2(x) 

where y1 and y2 form a fundamental set of solutions on I of the associated homogeneous 

D.E. therefore 

1 1 1( ) ( ) 0y P x y Q x y′′ ′+ + =   and 2 2 2( ) ( ) 0y P x y Q x y′′ ′+ + =  

We also impose the assumption 1 1 2 2 0y u y u′ ′+ =  in order to simplify the first derivative and 

thereby the second derivate of yp. We differentiate yp twice giving us  

1 1 1 1 2 2 2 2 1 1 2 2         py u y y u u y y u u y u y′ ′ ′ ′ ′ ′′ = + + + = +   and  1 1 1 1 2 2 2 2           py u y y u u y u y′′ ′′ ′ ′ ′′ ′ ′= + + +  

then substitute these into the original D.E. and group terms 

[ ] [ ] ( )1 1 1 1 2 2 2 2 1 1 2 2u y Py Qy u y Py Qy y u y u f x′′ ′ ′′ ′ ′ ′ ′ ′+ + + + + + + =  

which gives you 

( )1 1 2 2y u y u f x′ ′ ′ ′+ =  

Now since we are going to seek two unknowns, u1 and u2, we need two equations. These are 

1 1 2 2       0y u y u′ ′+ =  and ( )1 1 2 2y u y u f x′ ′ ′ ′+ =  

From linear algebra Cramer's rule is a way of obtaining the solution of the system in terms 

of determinants. 

Let 
1 2

1 2

y y
W

y y
=

′ ′
 , 

2

1

2

0

( )

y
W

f x y
=

′
, and 

1

2

1

0

( )

y
W

y f x
=

′
 then  

1 2
1

( )W y f x
u

W W
′ = = −  and 2 1

2

( )W y f x
u

W W
′ = =  

 Now to find u1 and u2 we integrate. To repeat this process for each problem will be too 

time consuming so it’s best to just know the formulas for 1u′  and 2u′ .  Once you have u1 and 

u2, create your particular solution y 
p =  u

1 y1
+ u

2 y2
 and then form your general solution   



y = y
c  + y 

p
 

 

Ex: Solve 
2( )4   4 1 xy y y x e′′ ′− + = +   

Ex: Solve 4    36  csc 3y y x′′+ =   

Ex: Solve 
1

y y
x

′′ − =   

 

Higher-Order Equations 

The same process can be used for linear nth order non-homogeneous D.E. equations put in 

standard form 
( ) ( 1)

1 1 0( ) ... ( ) ( ) ( )n n

ny P x y P x y P x y f x−
− ′+ + + =

 
If 1 1 2 2       ...   c n ny c y c y c y= + + +  is the complimentary solution to the associated homogeneous 

D.E., then a particular solution is 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )  ...p n ny u x y x u x y x u x y x= + + +   

where the ku′  , k = 1, 2,..., 3 are determined by the n equations 

1 1 2 2 ... 0n ny u y u y u′ ′ ′+ + + =  

1 1 2 2 ... 0n ny u y u y u′ ′ ′ ′ ′ ′+ + + =  

. . . . 
    1     1  ( ) ( ) (   1

1 1 2 2

)       ...    ) (n n n

n ny u y u y u f x− − −′ ′ ′+ + + =  

 

Cramer's Rule gives 

, 1,2,....,k
k

W
u k n

W
′ = =  

where W is the Wronskian of y1, y2, ..., yn  and Wk is the determinant obtained by replacing 

the kth column of the Wronkskian by (0,0,0,...,f(x)) 
 

Cauchy-Euler Equation: 

A linear D.E. of the form 
1

1

1 1 01
... ( )

n n
n n

n nn n

d y d y dy
a x a x a x a y g x

dx dx dx

−
−

− −
+ + + + =  

where the coefficients an, an-1,…, a0 are constants, is known as the Cauchy-Euler equation. 
The disguising characteristic is that the degree of x matches the order of the derivative. 
 

We first look at the general solution to the second order homogeneous equation 
2 0ax y bxy cy′′ ′+ + =  

then the solution to higher order equations will follow. 
 

We try a solution of the form y = xm, where m is to be determined.  Similar to what happened 

when we substituted y = emx, when we substitute y = xm, each term of a Cauchy-Euler 

equation becomes a polynomial in m times  xm. 

 

 

 



If  
my x= , 

1my mx −′ = , and 
2( 1) my m m x −′′ = −  then  

2 2 2

2

( 1) 1

( 1)

( ( 1) )

( ( ) ) 0

m m m

m m m

m

m

ax y bxy cy ax m m x bxmx cx

am m x bmx cx

am m bm c x

am b a m c x

−′′ ′+ + = − + − +

= − + +

= − + +

= + − + =

 

Letting xm = 0 achieves nothing, so the roots of 2 ( ) 0am b a m c+ − + = , which will be the 

auxillary equation will give us the solutions of the D.E. 

 

There are three different cases to consider 

Case 1: Distinct Real Roots 

Let m1 and m2 denote the real roots such that m1 ≠ m2. Then 1

1    
m

y x= and 2

2    
m

y x= for a 

fundamental set of solutions. Therefore the general solution to the D.E. is  
1 2

1 2

m m
y c x c x= +  

Case 2: Repeated Real Roots 

If  the roots are repeated, m1 = m2,  we obtain one solution 1

1    
m

y x= . With the 

discriminant being zero the root is 1

( )

2

b a
m

a

− −
= . We can use the reduction of order 

formula to construct a second solution by first putting the second order Cauchy-Euler 

equation in standard form  

2
0

b c
y y y

ax ax
′′ ′+ + =   where ( )

b
P x

ax
=   and ( ) ln

b

a
b

P x dx dx x
ax

 
= =  

 
∫ ∫  

So 1 1 1 1 1 1

1

ln
2

2
2 ln

b

a b b b ax
m m m m m ma a a

m

e dx
y x dx x x x dx x x x dx x x x

x x

− − −−
−= = = = =∫ ∫ ∫ ∫   

For higher order equations if m1 has multiplicity k then it can be shown that 
1 1 1 1 12 3 1, ln , (ln ) , (ln ) ,... (ln )
m m m m m kx x x x x x x x x −

 

are linearly independent solutions. 

 

Case 3: Conjugate Complex Roots 

If the roots are conjugate pairs 1m iα β= +  and 2m iα β= −  then the solution is  

1 2

i ixy C C xα β α β+ −= +  

But we want to write the solution in terms of real functions only, so we use Euler's formula 

and get 

( ) ( )1 2ln( cos lnsin )x c xy x cα β β+=  

 

EEEExxxx:::: Solve 
2 2 4 0x y xy y′′ ′− − =    

EEEExxxx:::: Solve 
2 84 0y xy yx ′′ ′+ + =   

EEEExxxx:::: Solve 24 17 0x y y′′ + = , (1) 1y = −  , 
1

(1)
2

y′ = −   



Ex:Ex:Ex:Ex: Solve 
3  2   5   7  8  0x y x y xy y′′′ ′′+ + ′ + =   

EEEExxxx:::: Solve 
2 43 3 2 xy xyx y x e′′ ′− + =   


