Linear Differential Equations of Higher Order

BasicTheory:

Initial-Value Problems
Solve: $a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
Subject to: $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$

Existence of a Unique Solution:

Let $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$ and $g(x)$ be continuous on an interval I, and let $a_{n}(x) \neq 0$ for every x in this interval. If $x=x_{0}$ is any point in this interval, then a solution $y(x)$ of the initial value problem exists on the interval and is unique.

Ex: Find the solution to $y^{\prime \prime}+y=4 x+10 \sin x$ subject to $y(\pi)=0, y^{\prime}(\pi)=2$ given that $y=c_{1} \cos x+c_{2} \sin x+4 x-5 x \cos x$ is a general solution to the D.E. Is that solution unique?

BoundaryValueProblems

Another type of problem consists of solving a linear DE of order two or greater in which the dependent variable y or its derivatives are specified at different points. A problem such as

Solve: $a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
Subject to: $y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$
is called a two point boundary value problem or BVP. The prescribed values $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$ are called boundary conditions. A solution of the foregoing problem is a function satisfying the D.E. on some interval I, containing x_{0} and x_{1}, whose graph passes through the two points $\left(x 0, y_{0}\right)$ and $\left(x 1, y_{1}\right)$.

Ex: Solve $y^{\prime \prime}+16 y=0$ subject to $y(0)=0, y(\pi / 2)=0$, given that $y=c_{1} \cos 4 x+c_{2} \sin 4 x$ is a general solution to the D.E.

Difference between and IVP and BVP:

- In an IVP all values needed to solve a particular problem are specified at a single point (x_{0})
- In a BVP all values needed to solve a particular problem are specified at different points ($\mathrm{X}_{0}, \mathrm{X}_{1}$, etc)

Linear Dependence and Linear Independence

A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is said to be linearly dependent on an interval I if there exists constants $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0
$$

for every x in the interval.
If the set of functions is not linearly dependent on the interval, it is said to be linearly independent.

In other words a set of functions is linearly independent on an interval I if and only if the only constants for which

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0
$$

for every x in the interval are $c_{1}=c_{2}=\ldots=c_{n}=0$

Ex: Are the functions $f_{1}(x)=\sin 2 x$ and $f_{2}(x)=\sin x \cos x$ linearly dependent or independent?

Ex: Are the functions $g_{1}(x)=x^{2}$ and $g_{2}(x)=\ln x$ linearly dependent or independent?
Ex: Are the functions $h_{1}(x)=\sqrt{x}+5, h_{2}(x)=\sqrt{x}+5 x, h_{3}(x)=x-1$ and $h_{4}(x)=x^{2}$ linearly dependent or independent?

Also note that a set of functions $f_{1}, f_{2}, f_{3}, \ldots, f_{n}$ is linearly dependent on an interval if at least one function can be expressed as a linear combination of the remaining functions.

Solutions of a D.E.

We are primarily interested in linearly independent solutions of linear D.E. To determine whether a set of solutions of an nth order linear D.E. is linearly independent can be done using determinants.

Wronskian:

Suppose each of the functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ possess at least $n-1$ derivatives. The determinant of

$$
\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & \ldots & f_{n}^{\prime \prime} \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right|=W\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

is called the Wronskian of the functions.

Criterion for Linearly Independent Functions:

The set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is linearly independent on I if and only if $W\left(f_{1}, f_{2}, \ldots, f_{n}\right) \neq 0$ for at least one point in the interval. The converse is also true

Ex: Are the following examples linearly independent?
A. $f_{1}(x)=\sin ^{2} x, f_{2}(x)=1-\cos 2 x$
B. $g_{1}(x)=e^{m_{1} x}, g_{2}(x)=e^{m_{2} x}, m_{1} \neq m_{2}$
C. $h_{1}(x)=e^{\alpha x} \cos \beta x, h_{2}(x)=e^{\alpha x} \sin \beta x, \alpha$ and β are real numbers
D. $z_{1}(x)=e^{x}, z_{2}(x)=x e^{x}, z_{3}(x)=x^{2} e^{x}$

Solutions of linear Differential Equations

A linear nth order DE of the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

is said to be homogeneous, whereas an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

with $g(x)$ not identically zero, is said to be nonhomogeneous
(The word homogeneous here does not refer to the coefficients that are homogeneous functions)

Ex: $2 y^{\prime \prime}+3 y^{\prime}+5 y=x$ is a nonhomogeneous second order linear differential equation and $2 y^{\prime \prime}+3 y^{\prime}+5 y=0$ is the associated homogeneous equation.

For now on we will make the following assumptions when stating definitions and theorems about linear equations on some interval I,

1. The coefficient functions $\boldsymbol{a}_{\boldsymbol{i}}(\boldsymbol{x}), \boldsymbol{i}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}$ are continuous
2. $g(x)$ is continuous
3. $\boldsymbol{a}_{\boldsymbol{n}}(\boldsymbol{x}) \neq \boldsymbol{0}$ for every x in the interval.

SuperpositionPrinciple-HomogeneousEquations:

Let $y_{1}, y_{2}, \ldots, y_{k}$ be linearly independent solutions of the homogeneous nth order differential equation on an interval I, then the linear combination

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{k} y_{k}(x),
$$

where the $c_{i}, i=0,1,2 \ldots, k$ are arbitrary constants, is also solution on the interval, we call this the general solution of the homogeneous D.E.

Any set $y_{1} y_{2}, \ldots, y_{n}$ of linearly independent solutions of the homogeneous linear nth order differential equation on an interval I is said to be a fundamental set of solutions on the interval.

Corollaries to the Superposition Theorem:

- A constant multiple $y=c_{1} y_{1}(x)$ of a solution $y_{1}(x)$ of a homogeneous linear DE is also a solution.
- A homogeneous linear DE always possesses the trivial solution $y=0$.

Ex: The functions $y_{1}=x^{2}$ and $y_{2}=x^{2} \ln x$ are both solutions of the homogeneous linear equation $x^{3} y^{\prime \prime \prime}-2 x y^{\prime}+4 y=0$ on the interval $(0, \infty)$. By the superposition principle the linear combination $y=c_{1} x^{2}+c_{2} x^{2} \ln x$ is also a solution of the equation on the interval.

Nonhomogeneous Linear Differential Equations

Any function y_{p}, free of arbitrary parameters, that satisfies a nonhomogeneous linear D.E. is said to be a particular solution or particular integral of the equation. An easy example would be $y_{p}=3$ is a particular solution to $y^{\prime \prime}+9 y=27$. The particle solution isn't necessary restricted to constants.

Let y_{p} be a given (or particular) solution of the nonhomogeneous linear nth order differential equation on the interval I, and let

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{k} y_{k}(x)
$$

denote the general solution of the associated homogeneous equation on the interval, then the general solution of the nonhomogeneous equation on the interval is defined to be

$$
y=y_{c}+y_{p}=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)+y_{p}(x)
$$

Ex: The nonhomogeneous linear differential equation $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=3 x$ has a particular solution $y_{p}=-\frac{11}{12}-\frac{1}{2} x$ and its associated homogeneous equations has a general solution $y_{c}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}$. Find the general solution to the nonhomogeneous D.E.

Reduction of Order

If you have a known solution to a second order linear differential equation one interesting thing that occurs with these types of equations is that you can use that solution to construct a second solution.

Suppose $y_{1}(x)$ is a known solution to $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$. We assume just like previously that $a_{2}(x) \neq 0$ for every x in some interval I. The process we use to a find a second solution $y_{2}(x)$ consists of reducing the order of the equation to a first order linear D.E., which we already know how to solve, through substitution.

Suppose that $y_{1}(x)$ is a nontrivial solution of the previous D.E. and that $y_{1}(x)$ is defined on I. We seek a second solution, $y_{2}(x)$, so that $y_{1}(x), y_{2}(x)$, are a linearly independent on I. If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent then the quotient $y_{2}(x) / y_{1}(x)$, is non-constant that is $y_{2}(x) / y_{1}(x)=u(x)$ or $y_{2}(x)=u(x) y_{1}(x)$. The function $u(x)$ can be found by substituting $y_{2}(x)=u(x) y_{1}(x)$ into the given differential equation.

The General Case

Suppose we divide $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ by $a_{2}(x)$ in order to put the equation in the standard form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

where $P(x)$ and $Q(x)$ are continuous on some interval I. Let us suppose further that $y_{1}(x)$ is a known solution of the standard form on I and that $y_{1}(x) \neq 0$ for every x in the interval. If we define $y(x)=u(x) y_{1}(x)$ it follows that

$$
y^{\prime}=u y_{1}^{\prime}+y_{1} u^{\prime} \text { and } y^{\prime \prime}=u y_{1}^{\prime \prime}+2 y_{1}^{\prime} u^{\prime}+y u^{\prime}
$$

Substituting into the standard form gives

$$
y^{\prime \prime}+P y^{\prime}+Q y=u \underbrace{\left(y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}\right)}_{=z e r o}+y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0 .
$$

This implies that we must have

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y\right) u^{\prime}=0
$$

Through the substitution $w=u^{\prime}$ we can turn the previous equation into the following homogeneous linear D.E.

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+P y\right) w=0
$$

Notice this equation is also separable.
If we separate we get

$$
\frac{d w}{w}+2 \frac{y_{1}^{\prime}}{y_{1}} d x+P d x=0
$$

Now integrate

$$
\begin{aligned}
& \ln |w|+2 \ln \left|y_{1}\right|=-\int P d x+c \\
& \ln \left|w y_{1}^{2}\right|=-\int P d x+c \\
& w y_{1}^{2}=c_{1} e^{-\int P d x} \\
& w=u^{\prime}=\frac{c_{1} e^{-\int P d x}}{y_{1}^{2}}
\end{aligned}
$$

If we integrate again we can find $u(x)$

$$
\int \frac{c_{1} e^{-\int P d x}}{y_{1}{ }^{2}} d x
$$

Lastly substituting into the original form of y_{2} which was $y_{2}(x)=u(x) y_{1}(x)$ gives

$$
y_{2}(x)=y_{1}(x) \int \frac{c_{1} e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Ex: Given that $y_{1}(x)=e^{x}$ is a solution of $y^{\prime \prime}-y=0$ on the interval $(-\infty, \infty)$. Use the reduction of order to find the second solution.

Ex: Given that $y_{1}(x)=x^{3}$ is a solution of $x^{2} y^{\prime \prime}-6 y=0$, use the reduction of order to find a second solution on the interval $(-\infty, \infty)$.

Ex: Given that $y_{1}(x)=x^{2}$ is a solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$, use the reduction of order to find a second solution on the interval $(0, \infty)$.

Ex: Given that $y_{1}(x)=\frac{\sin x}{\sqrt{x}}$ is a solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0$, use the reduction of order to find a second solution on the interval $(0, \infty)$.

Homogeneous Linear Equations with Constant Coefficients

For a linear $1^{\text {st }}$ order D.E. $y^{\prime}+a y=0$ we can see that $y=c_{1} e^{a x}$ is a solution. Then we can also seek to determine whether exponential solutions exist for higher order equations that have constant coefficients.

Auxiliary Equation

Consider the special case of second order equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ where a, b, and c are constants. If we try to find a solution of the form $y=e^{m x}$ then after substituting $y^{\prime}=m e^{m x}$ and $y^{\prime \prime}=m^{2} e^{m x}$ the original equation becomes

$$
a m^{2} e^{m x}+b m e^{m x}+c e^{m x}=0 \text { or } e^{m x}\left(a m^{2}+b m+c\right)=0
$$

since $e^{m x} \neq 0$ for all x, it is apparent the only way $y=e^{m x}$ can satisfy the D.E. is if m is chosen as a root of the quadratic equation $a m^{2}+b m+c=0$. This is called the auxiliary equation of the differential equation.

Given that there are always two roots m_{1} and m_{2} to the quadratic there will be three corresponding cases

1. m_{1} and m_{2} are real and distinct (discriminant >0)
2. m_{1} and m_{2} are real and equal (discriminant $=0$)
3. m_{1} and m_{2} are complex conjugate numbers (discriminant <0)

Case 1: Distinct Real Roots

Under the assumption that the auxiliary equation has two unequal real roots m_{1} and m_{2}, we find two solutions, $y=e^{m_{1} x}$ and $y=e^{m_{2} x}$. We have seen that these functions are linearly independent and hence form a fundamental set. Therefore the general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case2: Repeated Real Roots

When $m_{1}=m_{2}$, we obtain only one exponential solution, $y=e^{m_{1} x}$ from the quadratic, that is $m_{1}=-b / 2 a$ it follows from the reduction of order formula that the second solution is

$$
y_{2}(x)=e^{m_{1} x} \int \frac{e^{-(b / a) x}}{\left(e^{m_{1} x}\right)^{2}} d x=e^{m_{1} x} \int \frac{e^{2 m_{1} x}}{e^{m_{1} x}} d x=e^{m_{1} x} \int d x=x e^{m_{1} x} .
$$

Therefor the general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x} .
$$

Case3: Conjugate Complex Roots

If m_{1} and m_{2} are complex, then we can write $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$ where α and β are real and $i^{2}=-1$. Formally there is no difference between this and case 1 except that we are dealing with complex numbers. So the general solution is

$$
y=C_{1} e^{(\alpha+\beta i) x}+C_{2} e^{(\alpha-\beta i) x}
$$

Usually in practice we prefer to work with real functions so we use Euler's formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

where θ is a real number. It follows from this formula that

$$
e^{i \beta x}=\cos \beta x+i \sin \beta x \text { and } e^{-i \beta x}=\cos \beta x-i \sin \beta x
$$

From this we can see that

$$
e^{i \beta x}+e^{-i \beta x}=2 \cos \beta x \text { and } e^{i \beta x}-e^{-i \beta x}=2 i \sin \beta x
$$

Looking back at the original general solution, if we let $C_{1}=C_{2}=1$ and $C_{1}=1$ and $C_{2}=-1$ we obtain the two solutions

$$
y_{1}=e^{(\alpha+i \beta) x}+e^{(\alpha-i \beta) x} \text { and } y_{2}=e^{(\alpha+i \beta) x}-e^{(\alpha-i \beta) x} .
$$

Using Euler's formula these become

$$
y_{1}=e^{\alpha x}\left(e^{i \beta x}+e^{-i \beta x}\right)=2 e^{\alpha x} \cos \beta x \text { and } y_{2}=e^{\alpha x}\left(e^{i \beta x}-e^{-i \beta x}\right)=2 i e^{\alpha x} \sin \beta x
$$

Therefore the general solution $y=c_{1} y_{1}+c_{2} y_{2}$ can be written as

$$
y=c_{1} e^{\alpha x} \cos \beta x+c_{2} e^{\alpha x} \sin \beta x=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
$$

Ex: Solve the following DE's
a. $5 y^{\prime \prime}-4 y^{\prime}-12 y=0$
b. $4 y^{\prime \prime}+4 y^{\prime}+y=0$
c. $y^{\prime \prime}+y^{\prime}+y=0$
d. $y^{\prime \prime}+k^{2} y=0$ where k is a real constant

Higher Order Equations

In general to solve the $n t h$ order D.E. where the coefficients are real constants, we must solve the $n t h$ degree polynomial auxiliary equation

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots+a_{2} m^{2}+a_{1} m+a_{0}=0
$$

Higher order polynomials have the three types of roots as quadratics: distinct real, repeated real, and/or complex conjugates. There are just more combinations of how these roots can come up.
If all roots are distinct reals such that $m_{1} \neq m_{2} \neq \ldots \neq m_{n}$ then the general solutions is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+\ldots c_{n} e^{m_{n} x}
$$

If there are repeated real roots, say m_{1} has multiplicity k, then the general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}+c_{3} x^{2} e^{m_{1} x}+\ldots+c_{k} x^{k-1} e^{m_{1} x}
$$

Complex conjugates would also occur the same as before. If a complex conjugate pair is repeated then you would for the previous repeated roots example and multiply each pair by an ascending power of x until you exhausted the multiplicity.
Due to the number of roots of a polynomial we can have any combinations of the previous. For example a fifth degree equation can have 3 real distinct and 2 complex, 1 distinct real a repeated real and a complex conjugate pair, etc.

Ex: Solve $y^{\prime \prime \prime}+3 y^{\prime \prime}+2 y^{\prime}+6 y=0$
Ex: Solve $3 y^{\prime \prime \prime}+5 y^{\prime \prime}+10 y^{\prime}-4 y=0$
Ex: Solve $\frac{d^{4} y}{d x^{4}}+8 \frac{d^{2} y}{d x^{2}}+16 y=0$

Differential Operators

In calculus, differentiation can be denoted by the capital letter D that is, $d y / d x=D y$. The symbol D is called the differential operator because it transforms a differentiable function into another function.

Ex: $D(\cos 4 x)=-4 \sin 4 x$.
Higher order derivatives can be expressed in terms of D as well:

$$
\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=D(D y)=D^{2} y
$$

Where y represents a sufficiently differentiable function.
Polynomial expressions involving D, such as $D+3, D^{2}+3 D-4$ are also differential operators. For example

$$
(D+3)\left(5 x^{2}+x\right)=(D+3)\left(5 x^{2}\right)+(D+3)(x)=D\left(5 x^{2}\right)+15 x^{2}+D(x)+3 x=15 x^{2}+13 x+1
$$

In general, we define an nth order differential operator or polynomial operator to be

$$
L=a_{n}(x) D^{n}+a_{n-1}(x) D^{n-1}+\ldots+a_{1}(x) D+a_{0}(x)
$$

As a consequence of differentiation two basic properties exist for L :

1. $L(c f(x))=c(L(f(x)), \mathrm{c}$ is a constant
2. $L\{f(x)+g(x)\}=L(f(x))+L(g(x))$
the differential operator L possess a linearity property; that is, L operating on a linear combination of two differentiable functions is the same as the linear combination L operating on the individual functions. We say L is a linear operator.

Any linear DE can be expressed in terms of D. For example $y^{\prime \prime}+5 y^{\prime}+6 y=5 x-3$ can be expressed as $D^{2} y+5 D y+6 y=\left(D^{2}+5 D+6\right) y=5 x-3$. We can write a linear $n t h$ order differential equations as

$$
L(y)=0 \text { or } L(y)=g(x)
$$

The linear differential polynomial operators can also be factored under the same rules as polynomial functions. If r_{1} is a root of L then ($D-r_{1}$) is a factor or L. The previous example could also be written as $\left(D^{2}+5 D+6\right) y=(D+2)(D+3) y=5 x-3$.

Annihilator Operator

If L is a linear differential operator with constant coefficients and $y=f(x)$ is a sufficiently differentiable function such that

$$
L(y)=0
$$

then L is said to be an annihilator of the function.
For example the constant function $y=k$ is annihilated by D since $D k=0$. The function $y=x$ is annihilated by the differential operator D^{2} since $D(D(x))=D(1)=0$.

The differential operators D^{n} annihilates power functions up to $y=x^{n-1}$.
As an immediate consequence of this and the fact that differentiation can be done term by term, a polynomial

$$
c_{o}+c_{1} x+c_{2} x^{2}+\ldots+c_{n-1} x^{n-1}
$$

can be annihilated by D^{n}. We often want to find the differential operator of lowest order that will annihilate a function. While D^{5} annihilates x^{2}, D^{3} is the smallest one.

Ex: Find the differential operator that annihilates $2-6 x^{2}+5 x^{3}-22 x^{4}$.
The differential operator $(D-\alpha)^{n}$ annihilates each of the functions

$$
e^{\alpha x}, x e^{\alpha x}, x^{2} e^{\alpha x}, \ldots, x^{n-1} e^{\alpha x}
$$

This is due to the fact from the previous lesson where if α is a root of the auxiliary equation $(m-\alpha)^{n}$ is a factor and the general solution to the homogenous D.E. is

$$
y=c_{1} e^{\alpha x}+c_{2} x e^{\alpha x}+c_{3} x^{2} e^{\alpha x}+\ldots+c_{n} x^{n-1} e^{\alpha x}
$$

Ex: Find the differential operator that annihilates the given function

$$
\text { a. } e^{-3 x} \quad \text { b. } 4 e^{2 x}-10 x e^{2 x}
$$

The differential operator [$\left.D^{2}-2 \alpha D+\left(\alpha^{2}+\beta^{2}\right)\right]^{n}$ annihilates each of the functions

$$
\begin{gathered}
e^{\alpha x} \cos \beta x, x e^{\alpha x} \cos \beta x, x^{2} e^{\alpha x} \cos \beta x, \ldots, x^{n-1} e^{\alpha x} \cos \beta x \\
e^{\alpha x} \sin \beta x, x e^{\alpha x} \sin \beta x, x^{2} e^{\alpha x} \sin \beta x, \ldots, x^{n-1} e^{\alpha x} \sin \beta x
\end{gathered}
$$

This can be seen by looking at the equation $\left[m^{2}-2 \alpha m+\left(\alpha^{2}+\beta^{2}\right)\right]^{n}=0$ when α and π are real numbers. It has complex roots $\alpha \pm i \beta$ both of multiplicity n found by the quadratic formula.

Ex: Find the differential operator that annihilates $5 e^{-x} \cos 2 x-9 e^{-x} \sin 2 x$
When $\alpha=0$ and $n=1$ a special case is

$$
\left(D^{2}+\beta^{2}\right)\left\{\begin{array}{l}
\cos \beta x \\
\sin \beta x
\end{array}=0\right.
$$

If we want to annihilate the sum of two or more functions the differential operators L_{1} and L_{2} of y_{1} and y_{2} respectively their product $L_{1} L_{2}$ will annihilate $c_{1} y_{1}+c_{2} y_{2}$

Ex: Find the differential operator that annihilates $7-x+6 \sin 4 x$
Ex: Find the differential operator that annihilates
a. $5+x^{2}-x e^{3 x}$
b. $e^{-2 x}+x e^{x}$
c. $x^{4}+\sin 3 x-x^{2} e^{5 x}$

Undetermined Coefficients: Annihilator Approach

Suppose that $L(y)=g(x)$ is a linear DE with constant coefficients and that $g(x)$ consists of finite sums and products of the functions that we have annihilators. In other words $g(x)$ is a linear combination of functions of the form

$$
k \text { (constant), } x^{m}, x^{m} e^{\alpha x}, x^{m} e^{\alpha x} \cos \beta x \text {, and } \mathrm{x}^{\mathrm{m}} \mathrm{e}^{\alpha x} \sin \beta x
$$

where m is a nonnegative integer and α and β are real numbers. We now know that such a function $g(x)$ can be annihilated by a differential operator L_{1} of lowest order consisting of a product of the operators $D^{n},(D-\alpha)^{n}$, and $\left[D^{2}-2 \alpha D+\left(\alpha^{2}+\beta^{2}\right)\right]^{n}$.

Applying L_{1} to both sides of the equation $L(y)=g(x)$ yields

$$
L_{1} L(y)=L_{1} g(x)=0
$$

By solving the homogeneous higher order equation $L_{1} L(y)=0$, we can discover the form of a particular solution y_{p} for the original non-homogeneous equation $L(y)=g(x)$.

We then substitute this assumed form into $L(y)=g(x)$ to find the explicit particular solution y_{p}. This procedure for determining y_{p}, is called the method of undetermined coefficients.

In previous sections it was stated that the general solution of a non-homogeneous linear DE $L(y)=g(x)$ is $y=y_{c}+y_{p}$, where y_{c} is the general solution of the associated homogeneous equation $L(y)=0$ and y_{p} is the particular solution of the non-homogeneous equation. Since we now know how to find both of these when the coeeficients are constants we can find the general solution to a non-homogeneous linear D.E.

Steps to Solve Undetermined Coeffieients: Annihilator Approach

If the D.E. $L(y)=g(x)$ has constant coefficients, and the function $g(x)$ has an differential annihilator then:
i. Find the complimentary (general) solution y_{C} for the associated homogeneous equation $L(y)=0$.
ii. Apply the differential operator L_{1} that annihilates the function $g(x)$ on both sides of the homogeneous equation $L(y)=g(x)$.
iii. Find the general solution of the associated higher-order homogeneous D.E. $L_{1} L(y)=$ 0
iv. Delete from the solution in step(iii) all those terms that are duplicated in the complimentary solution y_{c} found in step (i). Form a linear combination y_{p} of the terms that remain. This is the form of a particular solution of $L(y)=g(x)$.
v. Substitute y_{p} found in the step (iv) into $L(y)=g(x)$. Match coefficients of the various functions on each side of the equality, and solve the resulting system of equations for the unknown coefficients in y_{p}.
vi. With the particular solution found in step (v), form the general solution $y=y_{c}+y_{p}$ of the given D.E.

Ex: Solve $y^{\prime \prime}+3 y^{\prime}+2 y=4 x^{2}$
Ex: Solve $y^{\prime \prime}-3 y^{\prime}=8 e^{3 x}+4 \sin x$
Ex: Solve $y^{\prime \prime}+8 y=5 x+2 e^{-x}$

Ex: Solve $y^{\prime \prime}+y=x \cos x-\cos x$
Ex: Determine the form of a particular solution for $y^{\prime \prime}-2 y^{\prime}+y=10 e^{-2 x} \cos x$
Ex: Determine the form of a particular solution for $y^{\prime \prime \prime}-4 y^{\prime \prime}+4 y^{\prime}=5 x^{2}-6 x+4 x^{2} e^{2 x}+3 e^{5 x}$
The method of undetermined coefficients is not applicable to linear D.E. with variable coefficients nor is it applicable to linear equations with constant coefficients when $g(x)$ is a function that does not have an annihilator such as

$$
g(x)=\ln x, g(x)=1 / x, g(x)=\tan x, g(x)=\sin ^{-1} x
$$

Variation of Parameters:

It can be seen that we can find a particular solution of a linear first-order D.E. of the form $y_{p}=u_{1}(x) y_{1}(x)$ on an interval. Where $y_{1}(x)$ is a general solution to the associated homogeneous D.E. To adapt this method of Variation of Parameters to a linear secondorder D.E. we begin by putting the equation in standard form.

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)
$$

For the linear second-order differential equation we seek a particular solution

$$
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where y_{1} and y_{2} form a fundamental set of solutions on I of the associated homogeneous D.E. therefore

$$
y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0 \text { and } y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}=0
$$

We also impose the assumption $y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0$ in order to simplify the first derivative and thereby the second derivate of y_{p}. We differentiate y_{p} twice giving us

$$
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+y_{1} u_{1}^{\prime}+u_{2} y_{2}^{\prime}+y_{2} u_{2}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \text { and } y_{p}^{\prime \prime}=u_{1} y_{1}^{\prime \prime}+y_{1}^{\prime} u_{1}^{\prime}+u_{2} y_{2}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}
$$

then substitute these into the original D.E. and group terms

$$
u_{1}\left[y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}\right]+u_{2}\left[y_{2}^{\prime \prime}+P y_{2}^{\prime}+Q y_{2}\right]+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x)
$$

which gives you

$$
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x)
$$

Now since we are going to seek two unknowns, u_{1} and u_{2}, we need two equations. These are

$$
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \text { and } y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x)
$$

From linear algebra Cramer's rule is a way of obtaining the solution of the system in terms of determinants.
Let $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|, W_{1}=\left|\begin{array}{cc}0 & y_{2} \\ f(x) & y_{2}^{\prime}\end{array}\right|$, and $W_{2}=\left|\begin{array}{cc}y_{1} & 0 \\ y_{1}^{\prime} & f(x)\end{array}\right|$ then

$$
u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{y_{2} f(x)}{W} \text { and } u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{y_{1} f(x)}{W}
$$

Now to find u_{1} and u_{2} we integrate. To repeat this process for each problem will be too time consuming so it's best to just know the formulas for u_{1}^{\prime} and u_{2}^{\prime}. Once you have u_{1} and u_{2}, create your particular solution $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ and then form your general solution

$$
y=y_{c}+y_{p}
$$

Ex: Solve $y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}$
Ex: Solve $4 y^{\prime \prime}+36 y=\csc 3 x$
Ex: Solve $y^{\prime \prime}-y=\frac{1}{x}$

Higher-Order Equations

The same process can be used for linear nth order non-homogeneous D.E. equations put in standard form

$$
y^{(n)}+P_{n-1}(x) y^{(n-1)}+\ldots P_{1}(x) y^{\prime}+P_{0}(x) y=f(x)
$$

If $y_{c}=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$ is the complimentary solution to the associated homogeneous D.E., then a particular solution is $y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)+\ldots+u_{n}(x) y_{n}(x)$ where the $u_{k}^{\prime}, k=1,2, \ldots, 3$ are determined by the n equations

$$
\begin{gathered}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}+\ldots+y_{n} u_{n}^{\prime}=0 \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}+\ldots+y_{n}^{\prime} u_{n}^{\prime}=0 \\
\ldots \\
y_{1}^{(n-1)} u_{1}^{\prime}+y_{2}{ }^{(n-1)} u_{2}^{\prime}+\ldots+y_{n}{ }^{(n-1)} u_{n}^{\prime}=f(x)
\end{gathered}
$$

Cramer's Rule gives

$$
u_{k}^{\prime}=\frac{W_{k}}{W}, k=1,2, \ldots, n
$$

where W is the Wronskian of $y_{1}, y_{2}, \ldots, y_{n}$ and W_{k} is the determinant obtained by replacing the k th column of the Wronkskian by ($0,0,0, \ldots, f(x)$)

Cauchy-Euler Equation:

A linear D.E. of the form

$$
a_{n} x^{x^{n}} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1} x \frac{d y}{d x}+a_{0} y=g(x)
$$

where the coefficients $a_{n,}, a_{n-1}, \ldots, a_{0}$ are constants, is known as the Cauchy-Euler equation. The disguising characteristic is that the degree of x matches the order of the derivative.

We first look at the general solution to the second order homogeneous equation

$$
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0
$$

then the solution to higher order equations will follow.
We try a solution of the form $y=x^{m}$, where m is to be determined. Similar to what happened when we substituted $y=e^{m x}$, when we substitute $y=x^{m}$, each term of a Cauchy-Euler equation becomes a polynomial in m times x^{m}.

If $y=x^{m}, y^{\prime}=m x^{m-1}$, and $y^{\prime \prime}=m(m-1) x^{m-2}$ then

$$
\begin{aligned}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y & =a x^{2} m(m-1) x^{m-2}+b x m x^{m}-1+c x^{m} \\
& =a m(m-1) x^{m}+b m x^{m}+c x^{m} \\
& =(a m(m-1)+b m+c) x^{m} \\
& =\left(a m^{2}+(b-a) m+c\right) x^{m}=0
\end{aligned}
$$

Letting $x^{m}=0$ achieves nothing, so the roots of $a m^{2}+(b-a) m+c=0$, which will be the auxillary equation will give us the solutions of the D.E.

There are three different cases to consider

Case 1: Distinct Real Roots

Let m_{1} and m_{2} denote the real roots such that $m_{1} \neq m_{2}$. Then $y_{1}=x^{m_{1}}$ and $y_{2}=x^{m_{2}}$ for a fundamental set of solutions. Therefore the general solution to the D.E. is

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{2}}
$$

Case 2: Repeated Real Roots

If the roots are repeated, $m_{1}=m_{2}$, we obtain one solution $y_{1}=x^{m_{1}}$. With the discriminant being zero the root is $m_{1}=\frac{-(b-a)}{2 a}$. We can use the reduction of order formula to construct a second solution by first putting the second order Cauchy-Euler equation in standard form

$$
y^{\prime \prime}+\frac{b}{a x} y^{\prime}+\frac{c}{a x^{2}} y=0 \text { where } P(x)=\frac{b}{a x} \text { and } \int P(x) d x=\int \frac{b}{a x} d x=\ln \left(x^{\frac{b}{a}}\right)
$$

So $y 2=x^{m_{1}} \int \frac{e^{-\ln x^{\frac{b}{a}}}}{x^{2 m_{1}}} d x=x^{m_{1}} \int x^{\frac{-b}{a}} x^{-2 m_{1}} d x=x^{m_{1}} \int x^{\frac{-b}{a}} x^{\frac{b-a}{a}} d x=x^{m_{1}} \int \frac{d x}{x}=x^{m_{1}} \ln x$
For higher order equations if m_{1} has multiplicity k then it can be shown that

$$
x^{m_{1}}, x^{m_{1}} \ln x, x^{m_{1}}(\ln x)^{2}, x^{m_{1}}(\ln x)^{3}, \ldots x^{m_{1}}(\ln x)^{k-1}
$$

are linearly independent solutions.

Case 3: Conjugate Complex Roots

If the roots are conjugate pairs $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$ then the solution is

$$
y=C_{1} x^{\alpha+i \beta}+C_{2} x^{\alpha-i \beta}
$$

But we want to write the solution in terms of real functions only, so we use Euler's formula and get

$$
y=x^{\alpha}\left(c_{1} \cos (\beta \ln x)+c_{2} \sin (\beta \ln x)\right)
$$

Ex: Solve $x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=0$
Ex: Solve $4 x^{2} y^{\prime \prime}+8 x y^{\prime}+y=0$
Ex: Solve $4 x^{2} y^{\prime \prime}+17 y=0, y(1)=-1, y^{\prime}(1)=-\frac{1}{2}$

Ex: Solve $x^{3} y^{\prime \prime \prime}+5 x^{2} y^{\prime \prime}+7 x y^{\prime}+8 y=0$
Ex: Solve $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=2 x^{4} e^{x}$

