Linear Differential Equations of Higher Order

BasicTheory:
Initial-Value Problems

n n—1

Solve: an(x)d J +a, (x) _)l)+...+a1(x)ﬂ+a0(x)y:g(x)
dx" dx" dx
Subject to: y(x,) = vy, ¥' (%) =¥ - y(n_l)(xo) = Vua

Existence of a Unique Solution:
Let a,(x), a,.1(x), ...,a;(x), a)(x) and g(x) be continuous on an interval /, and let

a,(x) # 0 for every x in this interval. If x = X, is any point in this interval, then a
solution y(x) of the initial value problem exists on the interval and is unique.

Ex: Find the solution to "+ =4x+10sinx subject to ¥(7) =0, y'(7)=2 given that
Y =¢,c0sX +¢,sinx +4x—5xcosx is a general solution to the D.E. Is that solution unique?

BoundaryValueProblems
Another type of problem consists of solving a linear DE of order two or greater in which the

dependent variable y or its derivatives are specified at different points. A problem such as

2
Solve: az(x)d—J; + al(x)d—y +a,(x)y =g(x)
dx dx

Subject to: y(x,) = o, ¥(x,) =¥,
is called a two point boundary value problem or BVP. The prescribed values y(x0) = y,
and y(x1) =y, are called boundary conditions. A solution of the foregoing problem is a

function satisfying the D.E. on some interval /, containing xo and x1, whose graph passes
through the two points (x0,y,) and (x1,y1).

Ex: Solve »"+16y =0 subjectto y(0)=0, y(7z/2)=0, given that y = ¢, cos4x +c,sin4x isa
general solution to the D.E.

Difference between and IVP and BVP:
e InanIVP all values needed to solve a particular problem are specified at a single
point (xo)
e InaBVP all values needed to solve a particular problem are specified at different
points (xo, X1, etc )

Linear Dependence and Linear Independence
A set of functions f;(x), f5(x),...f,(x) is said to be linearly dependent on an interval

I if there exists constants ¢y, ¢, ...,c,, not all zero, such that

of, (X)+e, f,(x)+ ...+c, [, (x)=0

for every x in the interval.

If the set of functions is not linearly dependent on the interval, it is said to be
linearly independent.



In other words a set of functions is linearly independent on an interval [ if and only if the
only constants for which

o f, (X)+e, f,(x)+ ...+c, [, (x)=0

for every x in the interval are c; =c, =...=c, =0

Ex: Are the functions f,(x) =sin2x and f,(x)=sinxcosx linearly dependent or
independent?

Ex: Are the functions g,(x)=x’ and g,(x) = Inx linearly dependent or independent?

Ex: Are the functions £,(x) = Jx+5, h,(x)= Jx + 5x,hy(x)=x—1and h,(x) = x’linearly
dependent or independent?

Also note that a set of functions f;, f, f3,..., f, is linearly dependent on an interval if at least
one function can be expressed as a linear combination of the remaining functions.

Solutions of a D.E.

We are primarily interested in linearly independent solutions of linear D.E. To determine
whether a set of solutions of an nth order linear D.E. is linearly independent can be done
using determinants.

Wronskian:
Suppose each of the functions f;(x), f5(x), ... f,(x) possess at least n — 1 derivatives. The

determinant of

f £ /.
A 1,
YA L EU AV

fi(n—l) f‘z(n—l) N f;l(n—l)

is called the Wronskian of the functions.

Criterion for Linearly Independent Functions:
The set of functions f;(x), f>(x), ... f,(x) is linearly independent on ] if and only if

W(fifs---f,)# O for at least one point in the interval. The converse is also true

Ex: Are the following examples linearly independent?
A. fi(x)=sin’x, f,(x)=1-cos2x

B. gl(x)zem ,gz(x)ze
C. h(x)=e" cospfx, h,(x)=e" sin fx, a and [ are real numbers
D.

1 X myx

, M #m,

z,(x) =", z,(x) = xe*, z,(x) = x’¢"



Solutions of linear Differential Equations
A linear nth order DE of the form

dny n—ly dy
a (x +a . (x +..+a(x)—+a,(x)y=0
n( ) dxn n—l( ) dxn_l 1( )dx 0( )y
is said to be homogeneous, whereas an equation
d" d"! d
a,(X) 2+ a, () et ,(0) 2+ ay (x)y = g(x)
dx dx dx

with g(x) not identically zero, is said to be nonhomogeneous

(The word homogeneous here does not refer to the coefficients that are homogeneous
functions)

Ex: 2y"+3)"+5y =x is anonhomogeneous second order linear differential equation and
2y"+3y"+ 5y =0is the associated homogeneous equation.

For now on we will make the following assumptions when stating definitions and theorems
about linear equations on some interval |,
1. The coefficient functions a;(x), i = 0,1,2,...,n are continuous

2. g(x) is continuous
3. a,(x) #0 for every x in the interval.

SuperpositionPrinciple-HomogeneousEquations:
Lety,, v, ...,V be linearly independent solutions of the homogeneous nth order differential

equation on an interval /, then the linear combination

Y =c1y1(X) + C2Y2(%) + o O Yi(X),
where the ¢, i = 0,1,2.., k are arbitrary constants, is also solution on the interval, we call this

the general solution of the homogeneous D.E.

Any sety ;Y. y, of linearly independent solutions of the homogeneous linear nth order

differential equation on an interval I is said to be a fundamental set of solutions on the
interval.

Corollaries to the Superposition Theorem:
e A constant multiple y = c; y;(x) of a solution y;(x) of a homogeneous linear DE is also

a solution.
e A homogeneous linear DE always possesses the trivial solution y = 0.

Ex: The functions y; = xZ2 and y, = x?Inx are both solutions of the homogeneous linear
equation x°y"—2xy’+4y =0 on the interval (0,00). By the superposition principle the

. . . 2 2 . . . .
linear combination y =c¢x” +¢,x" Inx is also a solution of the equation on the interval.



Nonhomogeneous Linear Differential Equations
Any function y,, free of arbitrary parameters, that satisfies a nonhomogeneous

linear D.E. is said to be a particular solution or particular integral of the
equation. An easy example would be y =3 is a particular solution to y"+9y =27. The

particle solution isn’t necessary restricted to constants.

Lety, be a given (or particular) solution of the nonhomogeneous linear nth order
differential equation on the interval /, and let

Ye=¢1Y1(X) + C2Y(%) + ot CYi(X)
denote the general solution of the associated homogeneous equation on the interval, then
the general solution of the nonhomogeneous equation on the interval is defined to be

V=Y. tY, =6y, (x) +C, Y, (x) +.t+C Y, (x) +y, (x)
Ex: The nonhomogeneous linear differential equation " —-6y"+11y'—6y =3x hasa
. . 11 1 . . :
particular solution y, = _E_Ex and its associated homogeneous equations has a general

solution y, = c,e” + c,e’* + c,e’*. Find the general solution to the nonhomogeneous D.E.

Reduction of Order

If you have a known solution to a second order linear differential equation one interesting
thing that occurs with these types of equations is that you can use that solution to construct
a second solution.

Suppose y, (x) is a known solution to a,(x)y" +a,(x)y" +a,(x)y = 0. We assume just like
previously that az(x) # 0 for every x in some interval I. The process we use to a find a
second solution y, (x) consists of reducing the order of the equation to a first order linear
D.E., which we already know how to solve, through substitution.

Suppose that yi1(x) is a nontrivial solution of the previous D.E. and that y:(x) is defined on L
We seek a second solution, yz(x), so that y1(x), y2(x), are a linearly independent on I. If y1(x)
and yz(x) are linearly independent then the quotient y>(x)/ y:1(x), is non-constant that is
v2(x)/ y1(x)= u(x) or yz(x)= u(x) y1(x). The function u(x) can be found by substituting

¥2(X) = u(x)y;1(x) into the given differential equation.

The General Case
Suppose we divide a,(x)y"+a,(x)y"+a,(x)y =0 by a,(x) in order to put the equation in the

standard form
V'+P(x)y'+0(x)y =0
where P(x) and Q(x) are continuous on some interval I. Let us suppose further that y;(x) is a
known solution of the standard form on I and that y;(x) # 0 for every x in the interval. If we
define y(x)= u(x)y,(x) it follows that
Y'=uy+yu and y'=uy!+2yu'+ yu'
Substituting into the standard form gives



V'+ Py +Qy=u(y+Py+0y)+yu"+(2y + Py, )u'=0.

=zero

This implies that we must have
yiu"+(2y] + Py)u'=0
Through the substitution w=u" we can turn the previous equation into the following
homogeneous linear D.E.
yw' +(2y + Py)w=0
Notice this equation is also separable.
If we separate we get

dw 2yl dx + Pdx =0
w N

Now integrate
ln|w| + 21n|y1| = —Ide +c

ln‘wylz‘ = —J-de +c

Wylz _ CIe—J.de
' CI€—dex
w=u'= 5
N
If we integrate again we can find u(x)
c e—jpdx
J7
Wi
Lastly substituting into the original form of y> which was y,(x) = u(x)y;(x) gives
J'P(x)dx
¥,(2) = y,(x) j TR L
(n ()

Ex: Given that y1(x) = ex is a solution of " —» =0 on the interval (-00,0). Use the
reduction of order to find the second solution.

Ex: Given that y1(x) = x3 is a solution of x*y"—6y =0, use the reduction of order to find a
second solution on the interval (-00,00).

Ex: Given that y1(x) = X2 is a solution of x*y" —3xy’+4y =0, use the reduction of order to
find a second solution on the interval (0,00).

i 1
Ex: Given that y, (x)= Sjl—x is a solution of x*y" + xy’ + (x° —Z)y =0, use the reduction of
X

order to find a second solution on the interval (0,0).




Homogeneous Linear Equations with Constant Coefficients
For a linear 1st order D.E. '+ ay = Owe can see that y = cie® is a solution. Then we can also

seek to determine whether exponential solutions exist for higher order equations that have
constant coefficients.

Auxiliary Equation
Consider the special case of second order equation ay” + by’ + cy =0 where a, b, and c are

constants. If we try to find a solution of the form y = em then after substituting
' m 2 _mx
y'=me

X

and y"=m"e™ the original equation becomes

2 _mx

am-e™ +bme™ +ce™ =0 or e"”‘(am2 +bm+c) =0
since em = () for all x, it is apparent the only way y = em can satisfy the D.E. is if m is chosen

as a root of the quadratic equation am” + bm + ¢ = 0. This is called the auxiliary equation
of the differential equation.

Given that there are always two roots m; and m, to the quadratic there will be three

corresponding cases
1. m; and m, are real and distinct (discriminant > 0)

2. m; and m, are real and equal (discriminant = 0)
3. m; and m, are complex conjugate numbers (discriminant < 0)

Case 1: Distinct Real Roots
Under the assumption that the auxiliary equation has two unequal real roots m; and m,,

we find two solutions, y=¢™"* and y=¢™". We have seen that these functions are linearly

independent and hence form a fundamental set. Therefore the general solution is
y=ce"" +c,e™”

Case2: Repeated Real Roots

When m; = m,, we obtain only one exponential solution, y=e

m; =-b/2a it follows from the reduction of order formula that the second solution is

m

* from the quadratic, that is

e—(b/a)x eZmlx
x)=e"" dx =™ | ——dx =e"" | dx = xe™"
2 2 2myx
em]x e .
Therefor the general solution is
_ mx mx
y=ce" +c,xe"".

Case3: Conjugate Complex Roots
If m; and m, are complex, then we can write m, =a +if8 and m, = a —iff where o and /3
arerealand i* =-1. Formally there is no difference between this and case 1 except that we
are dealing with complex numbers. So the general solution is

y= Cle(a +Pix | Cze(a - Bi)x
Usually in practice we prefer to work with real functions so we use Euler’s formula:

¢’ =cos@+isin@

where 0 is a real number. It follows from this formula that



e’ = cos fx +isin fx and e " = cos Bx —isin Bx

From this we can see that

e’ + e =2c0s fx and € —e ¥ =2isin Bx
Looking back at the original general solution, if we let C1=C2=1 and C:=1 and C2=-1 we
obtain the two solutions

y, = L @HPT 4 @iy ap g y, = pl@HPx _ pla=if)x
Using Euler’s formula these become

y, =e“ (e +e ) =2e" cos fx and y, = e™ (e’ —e ") = 2ie™ sin Bx

Therefore the general solution y = ¢y, +¢,y, can be written as

y = c,e™ cos fx + c,e™ sin Bx = ™ (¢, cos fx + ¢, sin fx)

Ex: Solve the following DE's

a. 5y"-4y'-12y =0

b. 4)"+4y'+y=0

c. V'+y'+y=0

d. y"+k’y =0 where kis a real constant

Higher Order Equations
In general to solve the nth order D.E. where the coefficients are real constants, we

must solve the nth degree polynomial auxiliary equation

am'+a,_m'" +..+am +am+a,=0
Higher order polynomials have the three types of roots as quadratics: distinct real,
repeated real, and/or complex conjugates. There are just more combinations of how these
roots can come up.
If all roots are distinct reals such that m, #m, #...#m, then the general solutions is

_ mx myx m,x
y=ce" +tce™ +..ce

If there are repeated real roots, say ms has multiplicity k, then the general solution is

2 _mx k=1 _mx

y=ce" +cxe" +exTe™ +. o x e
Complex conjugates would also occur the same as before. If a complex conjugate pair is
repeated then you would for the previous repeated roots example and multiply each pair
by an ascending power of x until you exhausted the multiplicity.
Due to the number of roots of a polynomial we can have any combinations of the previous.
For example a fifth degree equation can have 3 real distinct and 2 complex, 1 distinct real a
repeated real and a complex conjugate pair, etc.

Ex: Solve »"+3y"+2y'+6y =0
Ex: Solve 3y"+5y"+10y' -4y =0
4

d’y dzy
Ex: Sol +8—=+16y=0
X oved I y

4
X




Differential Operators
In calculus, differentiation can be denoted by the capital letter D that is, dy/dx = Dy. The

symbol D is called the differential operator because it transforms a differentiable function
into another function.

Ex: D(cos4x) = -4sin4x.

Higher order derivatives can be expressed in terms of D as well:
d(dy)_d’y .
—| = |= =D(Dy)=D
dx ( dx j dx’ ( y) 4
Where y represents a sufficiently differentiable function.

Polynomial expressions involving D, such as D + 3, D2+ 3D - 4 are also differential
operators. For example

(D +3)(5x> +x) = (D +3)(5x*) + (D +3)(x) = D(5x%) +15x* + D(x) + 3x =15x” +13x +1

In general, we define an nth order differential operator or polynomial operator to be
L=a,(x)D" +a, (x)D"" +...+a,(x)D +a,(x)

As a consequence of differentiation two basic properties exist for L:

1. L(cf(x))=c(L(f(x)) cis a constant

2. L{f(x) +g9(x)} = LX) + L(g(x))
the differential operator L possess a linearity property; that is, L operating on a linear
combination of two differentiable functions is the same as the linear combination L
operating on the individual functions. We say L is a linear operator.

Any linear DE can be expressed in terms of D. For example y"+5y'+6y =5x -3 can be
expressed as D’y +5Dy +6y = (D’ +5D +6)y =5x —3. We can write a linear nth order
differential equations as

Ly)=0orL(y)=g(x)
The linear differential polynomial operators can also be factored under the same rules as
polynomial functions. If r1 is a root of L then (D - r1) is a factor or L. The previous example

could also be written as (D’ +5D+6)y =(D +2)(D +3)y =5x -3.

Annihilator Operator
If L is a linear differential operator with constant coefficients and y = f (x] is a sufficiently

differentiable function such that

Ly)=0
then L is said to be an annihilator of the function.

For example the constant function y = k is annihilated by D since Dk = 0. The
function y = x is annihilated by the differential operator D? since D(D(x))=D(1)=0.

The differential operators D" annihilates power functions up to y = x"1

As an immediate consequence of this and the fact that differentiation can be done term by
term, a polynomial



2 n—1
c, + X + X +...+ C, X

can be annihilated by D". We often want to find the differential operator of lowest order
that will annihilate a function. While D5 annihilates x4, D3 is the smallest one.

Ex: Find the differential operator that annihilates 2—6x” +5x* —22x*

The differential operator (D —a)" annihilates each of the functions

ax ax 2 _ax n-1_ax

e, xe™ , xe”,...,x""e

This is due to the fact from the previous lesson where if a is a root of the auxiliary equation
(m—a)" is a factor and the general solution to the homogenous D.E. is
y=ce” +cxe™ + e, x’e™ +.. +co x" e
Ex: Find the differential operator that annihilates the given function
a ¢°" b. 4e* —10xe™

The differential operator [D*~2aD +(a” + #°)I" annihilates each of the functions

2 _ax n-1_ax
e e

e cos fx, xe” cos fx,x e cosBx,..,x cos fx

n-1_ax

e® sin fx, xe® sin Bx,x’e” sin B x, ..., x" e sin B x

This can be seen by looking at the equation [m* —2am+(a’ +f*)]"=0 when « andn are

real numbers. It has complex roots @ i/ both of multiplicity n found by the quadratic
formula.

Ex: Find the differential operator that annihilates 5e” " cos2x —9e¢ “sin2x

When a = 0 and n = 1 a special case is

(D + ﬂz){cosﬁx =0

sin fx

If we want to annihilate the sum of two or more functions the differential operators
L; and L, of y; and y, respectively their product L,L, will annihilate c;y; + c,y,

Ex: Find the differential operator that annihilates 7 — x + 6sin4x

Ex: Find the differential operator that annihilates
a. S+x’—xe™
b.e " +xe'

4 . 25
c. x +sin3x—x"¢e”



Undetermined Coefficients: Annihilator Approach
Suppose that L(y) = g(x) is a linear DE with constant coefficients and that g(x) consists of

finite sums and products of the functions that we have annihilators. In other words g(x) is
a linear combination of functions of the form

k (constant), xm, xme®, xme®cosfx, and xme*sinfx
where m is a nonnegative integer and a and S are real numbers. We now know that such a
function g(x) can be annihilated by a differential operator L: of lowest order consisting of a

product of the operators D" , (D —a)" , and [D* -2aD + (a® + B°)]".

Applying L1 to both sides of the equation L(y) = g(x) yields

LiL(y) = L1g(x) = 0.
By solving the homogeneous higher order equation L;L(y) = 0, we can discover the form of a
particular solution yp for the original non-homogeneous equation L(y) = g(x).

We then substitute this assumed form into L(y) = g(x) to find the explicit particular solution
Yp- This procedure for determining yp, is called the method of undetermined coefficients.

In previous sections it was stated that the general solution of a non-homogeneous linear DE
L(y) = g(x)isy = yc + yp, where yc is the general solution of the associated homogeneous

equation L(y) = 0 and yp is the particular solution of the non-homogeneous equation. Since

we now know how to find both of these when the coeeficients are constants we can find the
general solution to a non-homogeneous linear D.E.

Steps to Solve Undetermined Coeffieients: Annihilator Approach
If the D.E. L(y) = g(x) has constant coefficients, and the function g(x) has an differential

annihilator then:
i.  Find the complimentary (general) solution y for the associated homogeneous
equation L(y) = 0.
ii.  Apply the differential operator L, that annihilates the function g(x) on both sides of

the homogeneous equation L(y) = g(x).
iii.  Find the general solution of the associated higher-order homogeneous D.E. L;L(y) =

0
iv.  Delete from the solution in step(iii) all those terms that are duplicated in the
complimentary solution y, found in step (i). Form a linear combination y, of the

terms that remain. This is the form of a particular solution of L(y) = g(x).
v.  Substitute y, found in the step (iv) into L(y) = g(x). Match coefficients of the various

functions on each side of the equality, and solve the resulting system of equations
for the unknown coefficients in yp.

vi. ~ With the particular solution found in step (v), form the general solution y =y, +y, of
the given D.E.

Ex: Solve y"+3)'+2y = 4x’
Ex: Solve y"—3y'=8¢" +4sinx
Ex: Solve y"+8y =5x+2e™"



Ex: Solve "+ y = xcosx—cosx

Ex: Determine the form of a particular solution for y”"—2y'+y =10e " cos x

2x

Ex: Determine the form of a particular solution for y" —4y"+4y' =5x> —6x +4x’e™ +3¢e™

The method of undetermined coefficients is not applicable to linear D.E. with variable
coefficients nor is it applicable to linear equations with constant coefficients when g(x) is a
function that does not have an annihilator such as

g(x) =Inx, g(x) = 1/x, g(x) =tanx, g(x) = sin x

Variation of Parameters:
It can be seen that we can find a particular solution of a linear first-order D.E. of the form
Yp= Uz(x)y;(x) on an interval. Where y;(x) is a general solution to the associated
homogeneous D.E. To adapt this method of Variation of Parameters to a linear second-
order D.E. we begin by putting the equation in standard form.
V'+P(x)y'+0(x)y = f(x)
For the linear second-order differential equation we seek a particular solution
Yp = U1 (X)y1(x) +uy(x)ys(x)
where y; and y, form a fundamental set of solutions on I of the associated homogeneous
D.E. therefore
WP +O(x)y =0 and yy+ P(x)y; +O(x)y, =0
We also impose the assumption y,u; + y,u; =0 in order to simplify the first derivative and
thereby the second derivate of y,. We differentiate y, twice giving us
Yy = wy, ]y, +you =y vy, and y =y vl +u, )iy,
then substitute these into the original D.E. and group terms
w [+ Pyl + Oy |+ u, [+ PVs + O, |+ viug + yauy = f (x)
which gives you
yiug + i = f (x)
Now since we are going to seek two unknowns, u; and u, we need two equations. These are
i+ y,uy =0 and yju) + yyu; = f (x)
From linear algebra Cramer's rule is a way of obtaining the solution of the system in terms
of determinants.

0 0
LetW:ylr yf ’VVIZ‘ yf,andW2=y1, then
DI f(x) ¥, »n f(x)
w w w w

Now to find u; and u, we integrate. To repeat this process for each problem will be too
time consuming so it’s best to just know the formulas for #/ and u,. Once you have u; and

u,, create your particular solutionyp =u,y,+u,y,and then form your general solution



Y=y, +y,

Ex: Solve y"—4)'+4y = (x +1)e**
Ex: Solve 4y"+36y = csc3x

" 1
Ex: Solve y —y = ;

Higher-Order Equations
The same process can be used for linear nth order non-homogeneous D.E. equations put in

standard form
YO+ P ()" L R(X)Y + R(x)y = f(x)
If y.=¢y +c,y,+ ..+c,y, isthe complimentary solution to the associated homogeneous
D.E., then a particular solution is y, = #,(x) y,(x) + u, (%) y,(x) + ... + u,(x) y, (x)
where the u, , k=12,..,3 are determined by the n equations
Y+ yuy +..+yu =0
yu +yu,+ ...+ yu =0

(n=1), 1 (n=1), 1 (n=1),1r _
B2 w+y, ‘Ut .ty, u, = f(x)

Cramer's Rule gives
u =—, k=12,...,n

where W is the Wronskian of y;, y,, ..., v, and W, is the determinant obtained by replacing
the kth column of the Wronkskian by (0,0,0.,...,f(x))

Cauchy-Euler Equation:
Alinear D.E. of the form

n n—1

n d y n-1 y dy
a x +a X +..+tax—+a = X
n dx n—1 dxn_l 1 dx Oy g( )

where the coefficients an, an-1,..., ao are constants, is known as the Cauchy-Euler equation.
The disguising characteristic is that the degree of x matches the order of the derivative.

We first look at the general solution to the second order homogeneous equation
2.n

ax“y"+bxy'+cy=0
then the solution to higher order equations will follow.
We try a solution of the form y = x™, where m is to be determined. Similar to what happened

when we substituted y = emx, when we substitute y = x™, each term of a Cauchy-Euler
equation becomes a polynomial in m times x™.



If y=x" y'=mx"" and y"=m(m—-1)x"" then
ax’y" +bxy'+cy = ax’m(m —1)x"" + bxmx" —1+ cx"
=am(m—1)x" + bmx™ + cx™
=(am(m—1)+bm+c)x"
=(am’ +(b—a)m+c)x" =0
Letting xm = 0 achieves nothing, so the roots of am’ +(b—a)m+ c = 0, which will be the
auxillary equation will give us the solutions of the D.E.

There are three different cases to consider
Case 1: Distinct Real Roots
Let m; and m, denote the real roots such that m; #m,. Then y = x"' and y, = x

my

for a
fundamental set of solutions. Therefore the general solution to the D.E. is
y=cx" +c,x™

Case 2: Repeated Real Roots
If theroots are repeated, m; =m, we obtain one solution y, = x"'.With the

—(b—a)
2a

formula to construct a second solution by first putting the second order Cauchy-Euler
equation in standard form

discriminant being zero the rootis m, = . We can use the reduction of order

b
y”+£y’+izy =0 where P(x)= b and '[P(x)dx = J-idx = ln(x“j
ax ax ax ax

b

e - b ba e
-2
dx =x'""[x “x Mdx = xm‘J.x “x ¢ dx :xm‘J.— =x"1Inx
X

So y2=x"[<

2m
X 1
For higher order equations if m1 has multiplicity k then it can be shown that
x™, x" Inx, x"(Inx)*, x"(Inx)’,... x" (Inx)*"

are linearly independent solutions.

Case 3: Conjugate Complex Roots
If the roots are conjugate pairs m, = & + i3 and m, = a —if} then the solution is

_ a+if a-iff
y=Cx""" +Cx

But we want to write the solution in terms of real functions only, so we use Euler's formula
and get

y=x%(¢,co8(BInx)+c,sin(Slnx))

Ex: Solve X )" —2xy' =4y =0

2..m

Ex: Solve 4x°y"+8x)y'+ y=0

Ex: Solve 4x2y"+17y=0, y(H)=-1, y'(l):_%



3..m

Ex: Solve x° )" +5x°y" +7x)' +8y =0
Ex: Solve x°)" —3x)’ +3y =2x"e"



