## An Intro to Limits

Sketch to graph of
$f(x)=\frac{x^{3}-1}{x-1}, x \neq 1$
The graph is a parabola with a hole at $(1,3)$
Although $x$ can not equal 1 for this function you can see what happens to $\mathrm{f}(\mathrm{x})$ as x approaches 1 from both directions. The notation used is

$$
\lim _{x \rightarrow c} f(x)=\text { or } \lim _{x \rightarrow 1} f(x)=
$$

This table shows us what is happing in the graph as well as the limit

| $\mathbf{x}$ | 0.75 | 0.9 | 0.99 | 0.999 | 1 | 1.001 | 1.01 | 1.1 | 1.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{f}(\mathbf{x})$ | 2.313 | 2.710 | 2.970 | 2.997 | $?$ | 3.003 | 3.030 | 3.310 | 3.813 |

Then we can say $\lim _{x \rightarrow 1} f(x)=3$
The limit must be the same from both directions!!!

## Three pronged approach to problem solving (finding limits)

1. Numerical approach - Construct a table of values
2. Graphical approach - Draw a graph by hand or using technology
3. Analytic approach - Use algebra or calculus

Ex: Find the limit of $f(x)$ as $x$ approaches 2 where $f$ is defined as

$$
f(x)= \begin{cases}1, & x \neq 2 \\ 0, & x=2\end{cases}
$$

## Common Types of Behavior Associated with Nonexistence of a

 Limit:1. $f(x)$ approaches a different number from the right side of $c$ that is approaches from the left side.
2. $f(x)$ increases or decreases without bound as $x$ approaches $c$.
3. $f(x)$ oscillates between two fixed values as $x$ approaches $c$.

Some examples of limits that fail to exist
a. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
b. $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$
c. $\lim _{x \rightarrow 0} \sin \frac{1}{x}$

## Evaluating Limits Analytically

Objective: Evaluate a limit using properties of limits. Develop and use a strategy for finding limits. Evaluate a limit using dividing out and rationalizing techniques. Evaluate a limit using the Squeeze Theorem.

## Some Basic Limits:

Let $b$ and $c$ be real numbers and let $n$ be a positive integer.

1. $\lim _{x \rightarrow c} b=b$
2. $\lim _{x \rightarrow c} x=c$
3. $\lim _{x \rightarrow c} x^{n}=c^{n}$
Ex: a. $\lim _{x \rightarrow 2} 3$
b. $\lim _{x \rightarrow-4} x$
c. $\lim _{x \rightarrow 2} x^{2}$

## Properties of Limits:

Let $b$ and $c$ be real numbers, let $n$ be a positive integer, and let $f$ and $g$ be functions with the following limits.

$$
\lim _{x \rightarrow c} f(x)=L \text { and } \lim _{x \rightarrow c} g(x)=K
$$

1. Scalar multiple: $\lim _{x \rightarrow c}[b f(x)]=b L$
2. Sum or difference: $\lim _{x \rightarrow c}[f(x) \pm g(x)]=L \pm K$
3. Product: $\lim _{x \rightarrow c}[f(x) g(x)]=L K$
4. Quotient: $\lim _{x \rightarrow c}\left[\frac{f(x)}{g(x)}\right]=\frac{L}{K}$ provided $\mathrm{K} \neq 0$
5. Power: $\lim _{x \rightarrow \mathrm{c}}[f(x)]^{n}=L^{n}$

Ex: a. $\lim _{x \rightarrow 3}\left(4 x^{2}-2 x+3\right)(x-1)$
b. $\lim _{x \rightarrow-2}\left(\frac{x+3}{x-2}\right)^{2}$

## Limits of Polynomials and Rational Functions:

If $p(x)$ and $q(x)$ are polynomials and $c$ is a real number, then

$$
\lim _{x \rightarrow c} p(x)=p(c) \text { and } \lim _{x \rightarrow c} \frac{p(x)}{q(x)}=\frac{p(c)}{q(c)} \text { if } q(c) \neq 0
$$

## The Limit of a Function Containing a Radical:

Let $n$ be a positive integer. The following limit is valid for all $c$ if $n$ is odd, and is valid for $c>0$ if $n$ is even.

$$
\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}
$$

## Limits of Trigonometric Functions

Let c be a real number in the domain of the given trigonometric function.

1. $\lim _{x \rightarrow c} \sin x=\sin c$
2. $\lim \cos x=\cos c$
3. $\lim _{x \rightarrow c} \tan x=\tan c$
4. $\lim _{x \rightarrow c} \cot x=\cot c$
5. $\lim _{x \rightarrow c} \sec x=\sec c$
$x \rightarrow c$
6. $\lim _{x \rightarrow c} \csc x=\csc c$

Ex: a. $\lim _{x \rightarrow \frac{\pi}{4}} \tan x=$
b. $\lim _{x \rightarrow \pi}(x \sin x)=$
c. $\lim _{x \rightarrow 0} \cos ^{2} x=$

## Functions That Agree at All But One Point:

Let $c$ be a real number and let $f(x)=g(x)$ for all $x \neq c$ in an open interval containing c . If the limit of $\mathrm{g}(\mathrm{x})$ as x approaches c exists, then the limit of $f(x)$ also exists and

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)
$$

Ex: a. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
b. $\lim _{x \rightarrow 3} \frac{3-x}{x^{2}-9}$

## A Strategy for Finding Limits:

1. Learn to recognize which limits can be evaluated by direct substitution
2. If the limit of $f(x)$ as $x$ approaches $c$ cannot be evaluated by direct substitution, try to find a function $g$ that agrees with $f$ for all $x$ other than $x=c$.
3. Apply the above theorem to conclude analytically that

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=g(c)
$$

4. Use a graph or table to reinforce your conclusion

Ex: a. $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x-3}$
b. $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$

Two Special Trigonometric Limits:

1. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
2. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$

Ex: a. $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
b. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$

