
Infinite Series 
Sequences: 
A sequence in defined as a function whose domain is the set of positive 
integers. Usually it’s easier to denote a sequence in subscript form 
rather than function notation. 

� a1, a2, a3, � an are the terms of the sequence and  
� an is the nth term 

Listing Terms of a Sequence 

a. { an } = {3 + (-1)
n
}  b. { bn } = {

n

n1 2−−−−
}  

c. a recursively defined sequence { cn }, where c1 = 25 and cn+1 = cn–5. 
 

Pattern Recognition for Sequences 

Ex: Find the sequence {an} first five terms are 
2

1

4

3

8

5

16

7

32

9
, , , , , ...
RST

UVW  
Ex: Determine the nth term of the sequence whose first five terms are 

−−−− −−−− −−−−
RST

UVW
2

1

8

2

26

6

80

24

242

120
, , , , , ..  

 

Limit of a Sequence 
If the terms of a sequence approach a limiting value the sequence is 
said to converge. 
  

Def’n of the Limit of a Sequence 
Let L be a real number. The limit of a sequence { an } is L, written as 

                   lim
n

na L
→→→→∞∞∞∞

====  

if for each ε > 0, there exists M > 0 such that a Ln −−−− <<<< εεεε  whenever n > M. 

If the limit L of a sequence exists, then the sequence converges to L. If 
the limit of a sequence does not exist, then the sequence diverges. 
 

Limit of a Sequence 
Let L be a real number. Let f be a function of a real variable such that  

lim ( )
n

f x L
→→→→∞∞∞∞

====  

If {an} is a sequence such that f(n) = an for every positive integer n, then  

lim
n

na L
→→→→∞∞∞∞

====  

 



Ex: Find the limit of the sequence whose nth term is a
n

n

n

==== ++++
F
HG
I
KJ1
1

 

 

Properties of Limits of Sequences 

Let lim n
n
a L

→∞
=  and lim n

n
b K

→∞
=  

1. lim( )n n
n

a b L K
→∞

± = ±       2. lim n
n
ca cL

→∞
= , c is any real number 

3. lim n n
n
a b LK

→∞
=                  4. 

lim n

n
n

a L

b K→∞
=

, bn≠0 and K≠0 

 
Ex: a. Find the limit of  { an } = {3 + (-1)

n
} if it exists. 

      b.  Find the limit of  { bn } = {
n

n1 2−−−−
} if it exists. 

Ex: Show that the sequence whose nth term is a
n

n n
====

−−−−

2

2 1
 converges 

 

Squeeze Theorem for Sequences 

If   lim limn n
x x
a L b

→∞ →∞
= =  

and there exists an integer N such that an < cn < bn for all n > N, then  

      lim n
x
c L

→∞
=  

 

Absolute Value Theorem 
For a sequence {an}, if 

         lim 0n
n

a
→∞

=  then lim 0n
n
a

→∞
=  

 

Ex: Show that 
1

{ } ( 1)
!

n

nc
n

 = − 
 

 converges, and find its limit. 

Monotonic Sequences and Bounded Sequences 

Definition of a Monotonic Sequence 
A sequence {an} is monotonic if all its terms are non-decreasing or non- 
increasing 

1 2 3 ... na a a a≤ ≤ ≤ ≤  or 1 2 3 ... na a a a≥ ≥ ≥ ≥  

Ex: Determine whether each sequence is monotonic 

a. 3 ( 1)
n

na = + −   b. 
2

1
n

n
b

n
=

+   c. 

2

2 1
n n

n
c =

−  



Definition of a Bounded Sequence 
1. A sequence {an} is bounded above if there is a real number M such 

that an ≤ M for all n. The number M is called an upper bound of the 
sequence. 

2. A sequence {an} is bounded below if there is a real number M such 
that N ≤ an for all n. The number N is called an lower bound of the 
sequence. 

3. A sequence {an} is bounded if it is bounded above and below. 
 

Bounded Monotonic Sequences 
If a sequence {an} is bounded and monotonic, then it converges. 
 

Ex: a. The sequence { } { }1na n
=  is both bounded and monotonic and so, 

by the last Thm must converge. 

b. The divergent sequence { } { }2

( 1)n
nb
n

= +  is monotonic, but not 

bounded. (its only bounded below) 

c. the divergent sequence { } { }( 1)nnc = −  is bounded but not monotonic. 

 

 
Series and Convergence 
If {an} is an infinite sequence then  

1 2 3

1

... ...n n

n

a a a a a
∞

=

= + + + + +∑   is an infinite series. 

 

Def’n of Convergent and Divergent Series 

For infinite series an
n====

∞∞∞∞

∑∑∑∑
1

, the nth partial sum is given by 

        Sn = a1 + a2 + � + an. 

• If the sequence of partial sums {Sn} converges to S, then the series 

an
n====

∞∞∞∞

∑∑∑∑
1

 converges. The limit S is called the sum of the series.  

                S = a1 + a2 + � + an + � 

• If {Sn} diverges, then the series diverges. 

 



Ex: a. 
1

1

2nn

∞

=
∑   b. 

1

1 1

1n n n

∞

=

 − + 
∑   c. 

1

1
n

∞

=
∑  

 

The series in example b is a telescoping series of the form 

b b b b b b1 2 2 3 3 4−−−− ++++ −−−− ++++ −−−− ++++b g b g b g ...  the nth partial sum is  

Sn = b1 – bn+1 is follows that a telescoping series converges iff bn+1 
approaches a finite number as n → ∞. 

If the series converges then 1 1lim n
n

S b b +→∞
= − .  

Ex: 2
1

2

4 1n n

∞

= −∑  

 

Geometric Series 

2

0

... ... , 0n n

n

ar a ar ar ar a
∞

=

= + + + + + ≠∑  is a geometric series with ratio r. 

 

Convergence of a Geometric Series 

A geometric series with ratio r diverges if 1r ≥ .  

If 0 1r< < , then the the series converges and  
0 1

n

n

a
ar

r

∞

=

=
−∑  

 

Ex: a. 
0

3

2nn

∞

=
∑   b. 

0

3

2

n

n

∞

=

 
 
 

∑  

 

Properties of Infinite Series 
If na A=∑ , nb B=∑  and c is any real number, then the following series 

converges to the indicated sums 

1. 
1

n

n

ca cA
∞

=

=∑  

2. 
1

( )n n

n

a b A B
∞

=

+ = +∑  

3. 
1

( )n n

n

a b A B
∞

=

− = −∑  

 
 
 
 
 
 
 
 
 
 
 
 



nth – Term Test for Divergence 
The following thm states that if a series converges, the limit of its nth 
term must be 0. 

Limit of nth Term of Convergent Series 

If 
1

n

n

a
∞

=
∑  converges, then lim 0n

n
a

→∞
= . 

 

nth – Term Test for Divergence 

If lim 0n
n
a

→∞
≠  , then 

1

n

n

a
∞

=
∑  diverges. 

 

Ex: a. 
0

2n

n

∞

=
∑   b. 

1

!

2 ! 1n

n

n

∞

= +∑   c. 
1

1

n n

∞

=
∑  

 
 

The Integral Test and p-Series 
 

The Integral Test 
If f is a positive, continuous, and decreasing for x ≥ 1 and an =  f(n), then 

            
1

n

n

a
∞

=
∑  and 

1
( )f x dx

∞

∫  

either both converge or both diverge. 
 

Ex: a. 2
1 1n

n

n

∞

= +∑   b. 2
1

1

1n n

∞

= +∑  

 

p – Series and Harmonic Series 

1

1 1 1 1
....

1 2 3p p p p
n n

∞

=

= + + +∑ is called a p–series where p is a positive 

constant. 

If p = 1, 
1

1 1 1
1 ....
2 3n n

∞

=

= + + +∑  is called a Harmonic series.  

A general harmonic series is of the form Σ1/(an+b). 
 
 
 
 
 
 
 
 
 
 
 
 



Convergence of a p - Series 
The p – series 

1

1 1 1 1
....

1 2 3p p p p
n n

∞

=

= + + +∑  

1. converges if p > 1, and  
2. diverges if 0 < p < 1. 
 

Ex: Determine whether the following series converges or diverges: 

1

2
n n

n
ln

====

∞∞∞∞

∑∑∑∑  

 

 

Comparisons of Series 
 

Direct Comparison Test 
Let 0 < an ≤ bn for all n. 

1. If bn
n====

∞∞∞∞

∑∑∑∑
1

 converges, then an
n====

∞∞∞∞

∑∑∑∑
1

 converges. 

2. If an
n====

∞∞∞∞

∑∑∑∑
1

 diverges, then bn
n====

∞∞∞∞

∑∑∑∑
1

 diverges. 

 

Ex: Determine the convergence or divergence of  
1

1

2 3nn

∞

= +∑ . 

Ex: Determine the convergence or divergence of 
1

1

2n n

∞

= +
∑ . 

 

Limit Comparison Test 
Suppose that an > 0, bn > 0, and  

         lim
n

n
n

a
L

b→∞

 
= 

 
 

where L is finite and positive. Then the two series Σan and Σbn either 
both converge of both diverge. 
 

Ex: Show that the following general harmonic series diverges.  

1

1
, 0, 0

n

a b
an b

∞

=

> >
+∑  



Ex: Determine the convergence or divergence of  2
1 1n

n

n

∞

= +∑ . 

Ex: Determine the convergence or divergence of  3
1

2

4 1

n

n

n

n

∞

= +∑ . 

 

 

Alternating Series 
 

A series where the terms continuously switch from positive to negative 
or vice versa is known as an alternating series.  

Ex: 
0

1
( 1)

2

n

n
n

∞

=

−∑  

Alternating Series Test 
Let an > 0. The alternating series 

( )−−−−

====

∞∞∞∞

∑∑∑∑ 1

1

n

n

na  and ( )−−−− ++++

====

∞∞∞∞

∑∑∑∑ 1
1

1

n

n

na  

converge if the following two conditions are met. 

1. lim
n

na
→→→→∞∞∞∞

==== 0                 2. a a for all nn n++++ ≤≤≤≤1 ,  

 

Ex: Determine the convergence or divergence of 
1

1

1
( 1)n

n n

∞
+

=

−∑  

Ex: Determine the convergence or divergence of ( ) 1
1 2

n
n

n∞

−
= −
∑  

Ex: Does the Alternating Series Test apply to 

1

1

( 1) ( 1)n

n

n

n

+∞

=

− +
∑       

 

Alternating Series Remainder 

If a convergent alternating series satisfies the condition 1 ,n na a+ ≤  then 

the absolute value of the remainder RN involved in approximating the 
sum S by SN is less than (or equal to) the first neglected term. That is, 

                 S S R aN N N−−−− ==== ≤≤≤≤ ++++1  

 
 
 



Ex: Approximate the sum of the following series by its first six terms.  

( ) 1

1

1
1

!

n

n n

∞
+

=

 −  
 

∑  

 

Absolute Convergence 

If the series an∑∑∑∑  converges, then an∑∑∑∑  also converges. 

 

Def’n of Absolute Value and Conditional Convergence 

1. an∑∑∑∑  is absolutely convergent if an∑∑∑∑  converges. 

2. an∑∑∑∑  is conditionally convergent if an∑∑∑∑  converges and an∑∑∑∑  

diverges. 
 

Ex: Determine whether each of the series is convergent or divergent. 
Classify any convergent series as absolutely or conditionally 
convergent.  

a. 
( ) !−−−−

====

∞∞∞∞

∑∑∑∑ 1

2
0

n

n

n

n
 b. 

( )−−−−

====

∞∞∞∞

∑∑∑∑ 1

1

n

n
n
 c. 

−−−− ++++

====

∞∞∞∞

∑∑∑∑ 1

3

1 2

1

b gn n
n

n

( )/

 d. 
( )

ln( )

−−−−
++++

====

∞∞∞∞

∑∑∑∑ 1

1
1

n

n
n

 

 
 

The Ratio and Root Tests 
 

Ratio Test 
Let Σan be a series with nonzero terms. 

1. Σan converges absolutely if lim
n

n

n

a

a→→→→∞∞∞∞

++++ <<<<1 1  

2. Σan diverges if lim
n

n

n

a

a→→→→∞∞∞∞

++++ >>>>1 1  or lim
n

n

n

a

a→→→→∞∞∞∞

++++ ==== ∞∞∞∞1
 

3. The Ratio Test is inconclusive if lim
n

n

n

a

a→→→→∞∞∞∞

++++ ====1 1 

 

Ex: Determine the convergence or divergence of 
0

2

!

n

n n

∞

=
∑  

 
 
 



Ex: Determine whether each series converges or diverges. 

a. 
2 1

0

2

3

n

n
n

n +∞

=
∑  b. 

1 !

n

n

n

n

∞

=
∑   c. 

1

( 1)
1

n

n

n

n

∞

=

−
+∑  

 

Root Test 
Let Σan be a series 

1. Σan converges absolutely if lim
n

n
n a

→→→→∞∞∞∞
<<<< 1 . 

2. Σan diverges if lim
n

n
n a

→→→→∞∞∞∞
>>>> 1  or lim

n
n

n a
→→→→∞∞∞∞

<<<< 1 . 

3. The Root Test is inconclusive if lim
n

n
n a

→→→→∞∞∞∞
==== 1. 

 

Ex: Determine the convergence or divergence of 

2

1

n

n
n

e

n

∞

=
∑ . 

 

Guidelines for Testing a Series for Convergence or Divergence. 
1. Does the nth term approach 0? If not the series is divergent. 
2. Is the series one of the special types: geometric, p-series, 

telescoping, or alternating? 
3. Can the Integral Test, Root Test, or Ratio Test be applied? 
4. Can the series be compared favorably to one of the special types? 
  

Determine the convergence or divergence of each series. 

a. 
n

n
n

++++
++++

====

∞∞∞∞

∑∑∑∑ 1

3 1
1

  b. 
ππππ
6

1

F
HG
I
KJ

====

∞∞∞∞

∑∑∑∑
n

n

  c. ne
n

n

−−−−

====

∞∞∞∞

∑∑∑∑
2

1

    

d. 
1

3 1
1
n

n
++++

====

∞∞∞∞

∑∑∑∑  e. −−−−
++++

====

∞∞∞∞

∑∑∑∑ 1
3

4 1
1

b gn
n

n
 f. 

n

n

n

!

10
1====

∞∞∞∞

∑∑∑∑   g. 
n

n

n

n

++++
++++

F
HG
I
KJ

====

∞∞∞∞

∑∑∑∑ 1

2 1
1

 

 

 
 
 
 
 
 



Power Series 
 

Def’n of Power Series 
If x is a variable, then an infinite series of the form  

           a x a a x a x a xn
n

n
n

n

==== ++++ ++++ ++++ ++++

====

∞∞∞∞

∑∑∑∑ 0 1 2
2

0

... ...  

is called a power series. More generally, an infinite series of the form 

           a x c a a x c a x c a x cn
n

n
n

n

( ) ( ) ( ) ... ( ) ...−−−− ==== ++++ −−−− ++++ −−−− ++++ −−−− ++++

====

∞∞∞∞

∑∑∑∑ 0 1 2
2

0

 

is called a power series centered at c, where c is a constant.  

 
Ex: Find the center of the following power series 

a. 
0 !

n

n

x

n

∞

=
∑   b. 

0

( 1)( 1)n

n

x
∞

=

− +∑  c. 
0

1
( 1)n

n

x
n

∞

=

−∑  

 

Radius and Interval of Convergence. 
A power series can be thought of as a function f  where the domain of f 
is the set of all values x for which the power series converges. 
The series always converges at its center c, so c always lies in the 
domain of f.  
 

Convergence of Power Series 
For a power series centered at c, precisely one of the following is true. 
1. The series converges only at c.  
2. There exists a real number R > 0 such that the series converges 

absolutely for x c R−−−− <<<< , and diverges for x c R−−−− >>>> . 

3. The series converges absolutely for all x.  
 

The number R is the radius of convergence of the power series.  
� If the series converges only at c, the radius of convergence is R = 

0 
� If the series converges for all x, the radius of convergence if R = ∞.  

The set of all values of x for which the power series converges is the 
interval of convergence of the power series. 

 



Ex: Find the radius of convergence of 
0

! n

n

n x
∞

=
∑  

Ex: Find the radius of convergence of
0

3( 2)n

n

x
∞

=

−∑  

Ex: Find the radius of convergence of 

2 1

0

( 1)

(2 1)!

n n

n

x

n

+∞

=

−
+∑  

Endpoint Convergence 
When r is a finite number the previous thm says nothing about the 
convergence at the endpoints of the interval (there is no or equal to) so 
they need to be tested separately. 

Ex: Find the interval of convergence of 
1

n

n

x

n

∞

=
∑  

Ex: Find the interval of convergence of 
0

( 1) ( 1)

2

n n

n
n

x∞

=

− +
∑  

Ex: Find the interval of convergence of 2
1

n

n

x

n

∞

=
∑  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Differentiation and Integration of Power Series. 
Power series representation of functions has played an important role in 
Calculus. Much on Newtons work with differentiation an integration was 
done in the context of power series.  
 

Properties of Functions Defined by Power Series 
If the function given by 

f x a x c

a a x c a x c

n
n

n

( ) ( )

( ) ( ) ...

==== −−−−

==== ++++ −−−− ++++ −−−− ++++

====

∞∞∞∞

∑∑∑∑
0

0 1 2
2

 

has a radius of convergence R > 0, then, on the interval    (c – R, c + R), 
f is differentiable (and therefore continuous). Moreover, the derivative 
and antiderivative of f are as follows.  

 

1

0

2

1 2 3

( ) ( )

2 ( ) 3 ( ) ...

n

n

n

f x na x c

a a x c a x c

∞
−

=

′ = −

= + − + − +

∑1.

 

1

0

2

0 1

( )
( )

1

( )
( ) ...

2

n

n

n

x c
f x dx C a

n

x c
C a x c a

+∞

=

−
= +

+

−
= + − + +

∑∫2.

 

The radius of convergence of the series obtained by differentiating or 
integrating a power series if the same as that of the original power 
series. The interval of convergence, however, may be different as a 
result of the behavior at the endpoints. 
 

Ex: For 

2 3

1

( ) ...
2 3

n

n

x x x
f x x

n

∞

=

= = + + +∑  

Find the intervals of convergence for each of the following 

a. f x dx( )z  b. f (x) c. ′′′′f x( )  

 

 

 
 
 
 



Representation of Functions by Power Series 
Geometric Power Series: 
In this section we will look at representing a function by a power series. 

Consider 
1

( )
1

f x
x

=
−  this closely resembles the geometric series 

 ar
a

r
r

n

n====

∞∞∞∞

∑∑∑∑ ====
−−−−

<<<<

0
1

1,  if a = 1 and r = x   therefore 
1

1
0

−−−−
====

====

∞∞∞∞

∑∑∑∑x
x
n

n

 

Ex: Find the power series for
4

( )
2

f x
x

=
+ , centered at 0 

Ex: Find the power series for
1

( )f x
x

= , centered at 1. 

 

Operations with Power Series 

Let f x a xn
n

( ) ==== ∑∑∑∑  and g x b xn
n

( ) ==== ∑∑∑∑  

1. f kx a k xn
n n

( ) ==== ∑∑∑∑  

2. f x a x
N

n
nN

( ) ==== ∑∑∑∑  

3. f x g x a b xn n
n

( ) ( ) ( )±±±± ==== ±±±±∑∑∑∑  
 

Ex: Find the power series centered at 0, for 2

3 1
( )

1

x
f x

x

−
=

−
 

 

 

Taylor and Maclaurin Series 
 

The Form of a Convergent Power Series 
If f is represented by a power series f (x) = Σan(x– c)

n
 for all x in an open 

interval I containing c, then an = f 
(n) 

(c)/n! and 
( )

2( ) ( )
( ) ( ) ( )( ) ( ) ... ( ) ...

2! !

n
nf c f c

f x f c f c x c x c x c
n

′′
′= + − + − + + − +  

 
 
 
 
 
 
 
 
 
 
 
 



Def’n of Taylor Series and Maclaurin Series 
If a function f has derivatives of all orders at x = c, then the series 

( )
2

0

( ) ( )
( ) ( ) ( )( ) ( ) ...

! 2!

n
n

n

f c f c
x c f c f c x c x c

n

∞

=

′′
′− = + − + − +∑  

is called the Taylor series for f (x) at c. Moreover, if c = 0, then the 

series is the Maclaurin series for f. 
 

If you know the pattern for the coefficients of the Taylor polynomial for a 
function, you can extend the pattern easily to form the corresponding 
Taylor series. 
 

Ex: Use the function f (x) = sin x to form the Maclaurin series 
( )

0

(0)

!

n
n

n

f
x

n

∞

=
∑  

and determine the interval of convergence. 
 

Convergence of a Taylor Series 

If lim
n

nR
→→→→∞∞∞∞

==== 0  for all x in the interval I, then the Taylor series for f 

converges and equals f (x). 

                    
( )

0

( )
( ) ( )

!

n
n

n

f c
f x x c

n

∞

=

= −∑  

 

Guidelines for Finding a Taylor Series 
1. Differentiate f (x) several times and evaluate each derivative at c. Try 

to recognize a pattern in these numbers. 
2. Use the sequence developed in the first step to form the Taylor 

coefficients an = f  
(n) 

(c)/n! and determine the interval of convergence 

for the resulting power series. 
3. Within the interval of convergence, determine whether or not the 

series converges to f (x).  
 

Ex: Find the Maclaurin series for f (x) = sinx
2
 

 


