
Functions of Several Variables 

Intro to Functions of Several Variables 

Every function you have dealt with to this point has been a function of a single variable, 

f(x). We have to extend the things we learned so far in calculus now to functions of 

multiple variables. For many equations we need to work with more than one 

independent variable for example W= Fd.  
 

Notation: 

1 independent variable 2 independent variables 3 independent variables 
2( ) 3 2 1y f x x x= = + +  2( , ) 5 4z f x y x xy= = +  2( , , ) 2 3w f x y z x z y z= = + −  

 

Functions of Two Variables: 

Let D be a set of ordered pairs of real numbers. If to each ordered pair (x,y) in D there 

corresponds unique real number f(x,y), then f is called a function of x and y. The set of 

values (x,y) is the domain of f and the set of values f(x,y) is the range. 
 

x and y are the independent variables and z = f(x,y) is the dependent variable. 
 

to draw a mapping picture of z=f(x,y) we need to think of 
2ℜ →ℜ  

 

Ex: State the domain and range  

a. 2 2
( , ) 16f x y x y= − −  

b. 2( , ) ln( )g x y x y= −  
 

All the basic operations for functions work the same way (adding, subtracting, etc.) 
 

The Graph of a Function of Two Variables: 

The graph of a function of two variables is the set of all points (x,y,z) for which z = f(x,y) 

where (x,y) is in the domain of f. These graphs will be interpreted as surfaces in space. 

We need to notice the graph of z = f(x,y) is a surface whose 

projection onto the x – y plane is D.  

 

 

 

Ex: Find the domain, range and describe the shape of 2 2
( , ) 25f x y x y= − −  

 

Level Curves: 

Another way to view a surface for a function of two variables is 

to observe the scalar field where f(x,y) = c where c is a real 

number assigned to the point (x,y). The scalar field f(x,y) = c is 

called a level curve.  
 

 



Functions of More Variables 

A function of three variables (x, y, z) is a rule that assigns to each ordered triple in the 

domain exactly on real number w = f(x, y, z). 

This is function that maps R
3
 to R

1 

 

A way to view a function of three variables is through level surfaces.  
 

__________________________________________________________________________________________________________________________ 

 

Limits and Continuity 

A δ – neighborhood about (x0, y0) is any point in the disk centered at (x0, y0) where radius 

of the disk is δ > 0. 

( ) ( ){ }2 2

0 0 0 0( ,neighborhood x y x x y yδ δ− = − + − <  

Any point in the disk is in the δ – neighborhood of the center 
 

An interior point of a region R is any point (x,y) such that 

there exists a δ – neighborhood with center (x,y) such that the 

entire δ – neighborhood is also inside the region R. 
 

A boundary point of a region R is any point (x, y) such that any 

δ – neighborhood with center (x, y) contains points interior to R and points outside of R.  
 

A region R is open if it does not contain all of its boundary points and a region R is closed 

if it contains all its boundary points. A region can be neither open nor closed.  
 

Limit of a Function of Two Variables: 

Let f be a function of two variables defined, except possibly at (x0, y0), on an open disk 

centered at (x0, y0), and let L be a real number. Then 

0 0( , ) ( , )
lim ( , )

x y x y
f x y L

→
=  

If for each ε > 0 there exists a δ > 0 such that 

( , )f x y L ε− <  whenever 
2 2

0 00 ( ) ( )x x y y δ< − + − <  

 
This implies that for any point (x, y) ≠ (x0, y0) in the disk of radius δ, the value f(x,y) lies 

between L + ε and L – ε.  



With functions of a single variable we can approach a value x = c for the left and the right. 

Now we are approaching a point in the plane and are approaching from infinitely many 

paths.  
 

To show that a limit does not exist you just need to find two paths  of approach for which 

the limit is not the same. 

Ex: Show the limit does not exist 2 2( , ) (0,0)
lim ( , )

x y

xy
f x y

x y→
=

+
 

Limits of functions of several variables have the same properties regarding sums, 

differences, products, and quotients as the limits of single variables. 

Ex: Evaluate 2 2( , ) (1,2)

3
lim ( , )

x y

xy
f x y

x y→
=

+
 

Remember: 

Continuity for a function f of a single variable at a point x = c exists only if all three of the 

following condition hold 

1. f(c) is defined  2. lim ( )
x c

f x
→

exists  3. ( ) lim ( )
x c

f c f x
→

=  

Continuity of a Function of Several Variables: 

A function f of two variables is continuous at a point (x0, y0) in an open region R if f(x0, y0) 

is equal to the limit of f(x, y) as (x, y) approaches (x0, y0). 

0 0
0 0

( , ) ( , )
lim ( , ) ( , )

x y x y
f x y f x y

→
=  

The function f is continuous in the open region R if it is continuous at every point in R 

Recall how continuity relates to different functions such as polynomials, rationals, etc. 

Ex: Discuss the continuity of the following functions 

a. 
5 3 4 2 3( , ) 4 3 7 6f x y x y x y x y= − + +  

b. 
2 2

2 3
( , )

x y
g x y

x y

+
=

−
 

c. 
2 2

3
( , )

xy
h x y

x y

−
=

+
 

_______________________________________________________________________________________________________________________ 

Partial Derivatives 

How will the value of a function be affected by a change in one of its independent 

variables? If we look at each independent variable one at a time this can be achieved 

using partial derivatives. 

Partial Derivatives of a Function of Several Variables: 

If z = f(x, y), then the first partial derivative of f with respect to a and y are the functions fx 

and fy defined by 

0

( , ) ( , )
( , ) limx

x

f x x y f x y
f x y

x∆ →

+ ∆ −
=

∆
 

0

( , ) ( , )
( , ) limy

y

f x y y f x y
f x y

y∆ →

+ ∆ −
=

∆
 

provided the limits exist 



To find each partial derivative we take the derivative with respect to one variable while 

holding the other variable constant. 
 

Notation for Partial Derivatives: 

For z = f(x,y), the partial derviatives fx and fy are denoted 

( , ) ( , )x x

z
f x y f x y z

x x

∂ ∂
= = =

∂ ∂
 and ( , ) ( , )y y

z
f x y f x y z

y y

∂ ∂
= = =

∂ ∂
 

The first partials evaluated at point (a,b) are denoted by 

( , )

( , )x

a b

z
f a b

x

∂
=

∂
 and 

( , )

( , )y

a b

z
f a b

y

∂
=

∂
 

 

Ex: Find fx and fy for each function 

a. 4 7( , )f x y x y=  

b. 2( , ) 4 sin(5 )g x y x xy=  

c. 3 4 5 6( , ) tan( ) ln( )f x y x y x y= +  
 

Partial derivatives for functions of three or more variables would work the same way. 

Take the derivative with respect to one variable at a time while holding all the other 

variables constant. 
 

Ex: Find fx, fy, and fz for the given functions 

a. ( , , ) cos(3 4 5 )f x y z x y z= + −  

b. 2 2 2ln( )w x y z= + +  
 

Higher order partial derivatives are just a process of taking the derivative with respect to 

a given variable multiple times while continuing to hold all other variables constant. We 

can also change which variable we take the derivative with respect to at each step. These 

are called mixed partial derivatives 
 

Notation: 

Differentiate twice with respect to x 
2

2 xx

f f
f

x x x

∂ ∂ ∂  = = ∂ ∂ ∂ 
 

Differentiate twice with respect to y 
2

2 yy

f f
f

y y y

 ∂ ∂ ∂
= = ∂ ∂ ∂ 

 

Differentiate with respect to x and then with respect to y 
2

xy

f f
f

y x y x

∂ ∂ ∂  = = ∂ ∂ ∂ ∂ 
   (mixed partial derivatives) 

 

If f is a functions of x and y, fxy and fyx are continuous on an open disk R, then, for every 

(x,y) in R, ( , ) ( , )xy yxf x y f x y=  

Ex: Find fxx fyy fxy and fyx for 2 2 2
( , , )f x y z x y z= + +  



Geometric representation of the partial derivatives 

If the surface z = f (x,y) is intersected with the plane y = b the z = f(x,b) is the trace curve 

(curve formed by the intersection). Therefore fx (a, b) represents the slope of the tangent 

line at the point (a, b, f(a, b)). The curve and the tangent line will be in the same plane      

y = b. Similarly, fy(a, b) represents the slope of the tangent line to the curve given by the 

intersection of z = f(x, y) with the plane x = a at the point (a, b, f(a, b)) 

 

Ex: The plane x = 2 intersects the surface 4 4( , ) 6f x y x xy y= + −  in a certain curve Find the 

slope of the tangent line to this curve at (2, 2, 24) 

Directional Derivatives and Gradients 

To determine the slope at a point on a surface, you need a new type of derivative called a 

directional derivative. 
 

Directional Derivative: 

The directional derivative of z = f(x,y) in the direction of the unit vector 1 2,u uu =  is 

given by: 

1 2
( , ) ( , ) ( , )x yD f x y f x y u f x y u= +

u  
The directional derivative is the slope of the tangent line at point Q to the trace curve 

obtained when intersecting the graph with a vertical plane through Q in the direction of 

u. (u must be a unit vector) 

For three variables it works much the same  
 

Ex: Find ( , )D f x y
u

in the direction of the vector 

a. 3 2( , ) 4 yf x y x e=  in the direction of 
3 1
,

2 2
=u  

b. sin 3 cos 4z x y= −  in the direction of 3, 4= −u  

c. 2 2 2
( , , )f x y z x y z= + +  in the direction of 

2 2 1
, ,
3 3 3

= −u  

 



Reasoning behind the directional derivative formula:  

We wish to find the rate of change of z at (x0, y0, z0) in the direction of an arbitrary unit 

vector u = <a,b>. To do this we consider the surface S with equation z =f(x,y) and use the 

point P(x0, y0, z0) that lies on z. The vertical plane that passes through P in the direction of 

u intersects S in a curve C. The slope of the tangent line T to C at point P is the rate of 

change of z in the direction of u. 

If Q(x, y, z) is another point on C and P′  and Q′ are the projections of P, Q onto the xy-

plane, then the vector P Q
→

′ ′  is parallel to u and so  

,P Q h ha hb
→

′ ′ = =u  

for some scalar h. Therefore, x – x0 = ha, y – y0 = hb, so x = x0 + ha, y = y0 + hb and  

0 0 0 0 0
( , ) ( , )z z z f x ha y hb f x y

h h h

∆ − + + −
= =  

If we take the limit as h goes to zero, we obtain the rate of change of z(with respect to 

distance) in the direction of u. 

0 0 0 0
0 0

0

0 0 1 0 0 2

( , ) ( , )
( , ) lim

( , ) ( , )

h

x y

f x ha y hb f x y
D f x y

h

f x y u f x y u

→

+ + −
=

= +

u

 

The Gradient of a Function 

Let z = f(x,y) be a function of x and y such that fx and fy exist. Then we define the gradient 

of f (denoted f∇ ) as the vector: ,x yf f f∇ = . In three 

variables , ,x y zf f f f∇ = .  At each point P there is a unique 

direction in which f(x,y) increases most rapidly. That direction 

is perpendicular to the level curves and is given by the 

gradient. The gradient at a point P is denoted 
p
f∇ . 

 

As you can see the directional derivative is really the dot 

product of the gradient and a unit vector u. 
 

Properties of the Directional Derivative and Gradient 

( ) cosP PD f P f f θ= ∇ • ∇
u

u =  

• f∇  points in the direction of maximum increase of f and point P,  or in other words  

θ = 0 and f∇  and u are parallel  

• f−∇  points in the direction of maximum rate of decrease at P or  in other words  

     θ = π and f∇  and u are parallel but opposite.  

• Any direction orthogonal to f∇  is a direction of zero change since θ = π/2 in other 

words f∇  is normal to the surface f at point P. 

 

 



Linearization, Tangent Planes, and Normal Planes 

The concept of the tangent line in single variable calculus becomes the tangent plane in 

two variables.  

Remember: 

If a function f(x) is differentiable at x = a, then  

• there exists a tangent line to the graph at x = a  

with slope ( )f a′  

• there exists a linear approximation to f(x) in an 

interval containing a 
 

The second one is what we need for differentiability 

of functions of two variables  
 

Recall that the linearization of f(x) at x = a is ( ) ( ) ( )( )L x f a f a x a′= + −  
 

A continuous function f(x, y) is differentiable if it is locally linear, that is, it its graph looks 

flatter and flatter as we zoom in on a point P = (a, b, f(a,b)) and eventually becomes 

indistguishable from the tangent plane.  
 

If a tangent plane to z at P = (a,b, f(a,b)) exists, then its equation must be z = L(x,y), where        

L(x, y) is the linearization at (a, b) defined by 

( , ) ( , ) ( , )( ) ( , )( )x yz L x y f a b f a b x a f a b y b= = + − + −   

Ex: Find the linearization of 2 3( , ) 2f x y x y y= +  at point (2, -1) 
 

Why must this be the tangent plane? Because it is the unique plane that contains the two 

tangent lines to the two vertical trace curves through P. 
 

A function f(x,y) is differentiable if fx(x,y) and fy(x,y) exist and are continuous in a 

neighborhood of (a,b). 

If a function is differentiable at (a, b), then a tangent plane to the surface exists at the 

point (a, b, f(a,b)). 
 

The line through P orthogonal to the plane is the surfaces normal line at P = (a, b, f(a,b)) 

and is found by ( , )xx a f a b t= +   ( , )
y

y b f a b t= +  

Ex: Find the equation of the tangent plane to ( , )
x

f x y
y

=  at (4, 4) 

For a surface given by z = f(x,y), you can convert to the general form F(x,y,z) = f(x, y) – z =0 

(this will give us the equation of a plane more similar to what we have seen before). 
 

The tangent plane to F(x,y, z) at P = (x0, y0, z0) is 

0 0 0 0 0 0 0 0 0 0 0 0
( , , )( ) ( , , )( ) ( , , )( ) 0
x y z
F x y z x x F x y z y y F x y z z z− + − + − =  

and the normal line is 0 0 0 0( , , )xx x f x y z t= + , 
0 0 0 0

( , , )
y

y y f x y z t= + , 0 0 0 0( , , )zz z f x y z t= +  

Ex: Find the equation of the tangent plane and normal line to 
2 2

2 3
4 9

x z
y+ + =  at (-2, 1, -3) 



 

Chain Rules for Functions of Several Variables 

Recall that the chain rule for functions of a single variable gives the rule for differentiating 

a composition function. If y = f(x) and x = g(t), where f and g are differentiable then 

y = f(g(t)) and ( ( )) ( )
dy dy dx

f g t g t
dt dx dt

′ ′= = . The same can be done for a function of two 

variables z = f(x,y) where x = g(t) and y = h(t) we can write z = f(g(t),h(t)). 
 

Chain Rule for One Independent Variable: 

Let z = f(x, y), where f is a differentiable function of x and y. If x = g(t) and y = h(t),where g 

and h are differentiable functions of t, the z is a differentiable function of t, and 

dz z dx z dy

dt x dt y dt

∂ ∂
= +
∂ ∂  

This can also be extended to a function of three variables, just continue the pattern.
 

 

Ex: Let sin( )z x y= − , where 2x t=  and y = 1 

Ex: Find 
dw

dt
 if 2 2 2ln( )w x y z= + +  and 2x t= , 31

3
y t= , and 2z t=  

Chain Rule for Two Independent Variable: 

Let w = f(x, y), where f is a differentiable function of x and y. If x = g(s,t) and                         

y = h(s,t),such that the first partials all exist, then  

w w x w y

s x s y s

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂    and  

w w x w y

t x t y t

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 

 

For functions w = f(x, y, z) and z = k(t) there would just be a third part to theses sums in 

terms of z.  
 

Ex: Find 
w

t

∂
∂

 if 3 23w y x y= −  and 2s tx e −= , 23 sy t e=  

Ex: Find 
w

t

∂
∂

 if 2 2 2w x y z= + +  and sinx t s= , cosy t s= , and 2z st=  

 

The chain rule can be used to give a more complete description of the process of implicit 

differentiation learned back in calc I.   

Implicit Differentiation for Functions of a Single Variable: 

If the function F(x,y) = 0 defines y implicitly as a function of x, then  

( , )
, ( , ) 0

( , )

x
y

y

F x ydy
F x y

dx F x y
= − ≠  

This method of implicit differentiation tends to be easier than the methods used in calc 1. 

Ex: Find 
dy

dx
 for 3 2 25 4 0y y y x+ − − + =  

 

 
 



Implicit Differentiation for Functions of Multiple Variables: 

If the function F(x,y,z) = 0 defines z implicitly as a function of x and y, then  

( , , )

( , , )

x

z

F x y zz

x F x y z

∂
= −

∂  and 
( , , )

, ( , , ) 0
( , , )

y

z

z

F x y zz
F x y z

y F x y z

∂
= − ≠

∂
 

 

Ex: Find 
z

x

∂
∂

 and 
z

y

∂
∂

 for 3 2 4 2 5 3 4 5 22 3 2 8 9x y z x y z x y z+ − + − = −  

 

Extrema of Functions of Two Variables and Optimization 

Let f(x,y) be defined on  a region R containing the point (a,b) then 

• f(a, b) is a local maximum of f if f(a, b) ≥ f(x, y) for all (x,y) in an open disk centered 

at (a,b) 

• f(a, b) is a local minimum of f if f(a, b) ≤ f(x, y) for all (x,y) in an open disk centered 

at (a,b) 

 

A point (a,b) is a critical point of f(x,y) if ( , ) ( , ) 0x yf a b f a b= =  or if one does not exist. 
 

Ex: Find the critical points for 2 2( , )f x y y x yx xy= − +  
 

First Derivative Test (Fermat’s Theorem): 

If f(x, y) has a local maximum or minimum at (a,b), then (a,b) is a critical point of f(x, y). 
 

Remember not all critical points give rise to extrema. Any critical point that is not an 

extreme value is saddle point. 
 

Ex: Find all extrema for 2 2( , ) 2 8 6 20f x y x y x y= + + − +  
 

 A value that helps in determining extrema in the discriminant or Hessian and is found by

( )2( , ) ( , ) ( , )xx yy xyD f a b f a b f a b= −  (use determinants to help remember)  

Second Derivative Test: 

Let (a,b) be a critical point of f(x, y) and fxx, fyy, and fxy are continuous near (a,b) then, 

• f(a, b) is a local maximum if fxx < 0 and D > 0 

• f(a, b) is a local minimum if fxx > 0 and D > 0 

• f(a, b) is a is a saddle point  if D < 0 

• the test is inconclusive if  D  = 0 
 

Ex: Find all extrema and saddle points for 3 3( , )f x y x xy y= − +  

Ex: Find all extrema and saddle points for 4 4( , ) 4 1f x y x y xy= + − +  
 

Lagrange Multipliers 

Sometimes we need to find the extreme values of a function whose domain is 

constrained to lie within some particular subset of the plane. The method is called the 

Lagrange Multipliers.  



Suppose we are trying to find the extreme values of f(x,y) subject to the constraint     

g(x,y) = 0.  This means we want to increase or decrease f(x,y) while remaining on some 

curve.  The gradient f∇ points in the direction of maximum increase or decrease, but we 

can’t move in the gradient direction because it would take us off the curve. 

 So if the gradient points toward the right we move in that direction along the curve until 

the f∇ becomes orthogonal to the constraint curve g(x,y) = 0 or in other words, f∇  is 

parallel to g∇ . If we solve the equation ( , ) ( , )f x y g x yλ∇ = ∇ , where λ is known as the 

Lagrange Multiplier, we will find extreme values due to the constraint. 

 

Lagrange Multipliers: 

Assume that f(x,y) and g(x,y) are differentiable functions. If f(x,y) has a local minimum of 

a local maximum on a constraint curve g(x,y) = 0 at P = (a,b), and if 0Pg∇ ≠ , then there is 

a scalar λ  such that  

( , ) ( , )f x y g x yλ∇ = ∇  

A point P  = (a,b) satisfying the Lagrange equations is called a critical point for the 

optimization problem with constraint and f(a,b) is called a critical value. 

For functions of three variable it works much the same way: ( , , ) ( , , )f x y z g x y zλ∇ = ∇  

 
 



To optimize f(x,y) subject to the constraint g(x,y) = 0  generally we can do the following 

1. Solve the three equations in three unknowns 
( , ) ( , )

( , ) ( , )

( , ) 0

x x

y y

f x y g x y

f x y g x y

g x y

λ

λ

=

=

=  
 In most cases you will: 

•••• Solve for λ in terms of x and y and set those equations equal. 

•••• Solve for x and y using the constraint equation. 

2. Evaluate f at all the critical points found in the previous step. The largest value is 

the maximum and the smallest is the minimum. 
 

Ex: Find the extreme values of ( , )f x y xy=  subject to 
2 2

1
8 2

x y
+ =  

Ex: Find the extreme values of 2 2( , ) 2f x y x y= +  on the cylinder 2 2 1x y+ =   
 

Ex: Find the extreme values of 2 2 2( , , ) 2 3f x y z x y z= + +  subject to 2 3 4 49x y z− − =  

 

 

 

 

  


