Introduction to Differential Equations

Definitions and Terminology

Differential Equation: An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation (DE).

Classification by Type: If an equation contains only ordinary derivatives of one or more dependent variables with the respect to a single independent variable is said to be an ordinary differential equation (ODE).
$\mathbf{E x}: \frac{d y}{d x}+5 y=e^{x}, \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+6 y=0$ and $\frac{d x}{d t}+\frac{d y}{d t}=2 x+y$
An equation involving partial derivatives of one or more dependent variables of two or more independent variables is called a partial differential equation (PDE).
Ex: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}-2 \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial t}$, and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
Most text will write ordinary derivatives using either Leibniz notation:
$\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}} \ldots$ or prime notation: $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime} \ldots$
Using prime notation the previous ODE's can be written as:

$$
y^{\prime}+5 y=e^{x} \text { and } y^{\prime \prime}-y^{\prime}+6 y=0
$$

Remember the notation for 4 th , 5 th, etc. derivatives

Other notations:

Newton's dot notation: $\frac{d^{2} s}{d t^{2}}=-32$ becomes $\ddot{s}=-32$
Subscript notation: the previous second PDE becomes:

$$
u_{x x}=u_{t t}-2 u_{t}
$$

Classification by Order:

The order of a differential equation (either ODE or PDE) is the order of the highest derivative in the equation.
Ex: $\frac{d^{2} y}{d x^{2}}+5\left(\frac{d y}{d x}\right)^{3}-4 y=e^{x}$ is a second order
We can express an nth ordinary differential equation in one dependent variable by general form:

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}\right)=0
$$

where \mathbf{F} is a real valued function of $n+2$ variables. We can solve this equation for the highest derivative by:

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots y^{(n-1)}\right)
$$

where f is a real valued continuous function and is referred to as the normal form of a differential equation.

Classification by Linearity:

An nth-order ordinary differential equation is said to be linear if F is linear in $y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, y^{(n)}$. This means that an nth order ODE is linear when

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

The two important cases are:

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \text { and } a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Characteristic Two Properties of a Linear ODE

- The dependent variable y and all its derivatives $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime} \ldots$ are of the first degree, that is, the power of each term involving y is 1 .
- The coefficients $a_{0}, a_{1}, \ldots ., a_{n}$, of $y, y^{\prime}, y^{\prime \prime} \ldots$ depend at most on the independent variable x.
$\mathbf{E x}:(y-x) d x+4 x d y=0, \quad y^{\prime \prime}-2 y^{\prime}+y=0$, and $\frac{d^{3} y}{d x^{3}}+x \frac{d y}{d x}-5 y=e^{x}$
A nonlinear ODE is one that is not linear.
Solutions of an ODE: any function ϕ, defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an nth order ODE reduces the equation to an identity, is said to be a solution of the equation on the interval.

Occasionally it will be convenient to denote the solution by an alternate symbol $y(x)$

Interval of Definition:

The interval I in the previous definition is called the interval of definition, the interval of existence, the interval of validity, or the domain of the solution and can be open closed or infinite.

Ex: Verify that the indicated function is a solution of a given differential equation on $(-\infty, \infty)$.
a. $d y / d x=x y^{1 / 2} ; y=(1 / 16) x^{4}$
b. $y^{\prime \prime}-2 y^{\prime}+y=0 ; y=x e^{x}$

A solution in which the dependent variable is expressed solely in term of the independent variable and constants is said to be an explicit solution. The previous solutions are explicit

Implicit solution of an ODE:

A relation $G(x, y)=0$ is said to be an implicit solution of an ODE on an interval I, provided there exists at least one function ϕ that satisfies the relation as well as the differential equation on I.

Ex: Verification of an Implicit Solution

The relation $x^{2}+y^{2}=25$ is an implicit solution of the differential equation

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

On the interval $-5<x<5$. By implicit differentiation we obtain

$$
\frac{d}{d x} x^{2}+\frac{d}{d y} y^{2}=\frac{d}{d x} 25 \text { or } 2 x+2 y \frac{d y}{d x}=0
$$

Families of Solutions:

When solving 1 st order DE's $F\left(x, y, y^{\prime}\right)=0$, we usually obtain a solution containing a single arbitrary constant or parameter c.

A solution containing an arbitrary constant represents a set $G(x, y, c)=0$ of solutions called a one parameter family of solutions.

When solving an nth order DE we seek an \boldsymbol{n} th parameter family of solutions.
A solution of a differential equation that is free of arbitrary parameters is called a particular solution.
Ex: $y=c x-x \cos x$ is a solution to $x y^{\prime}-y=x^{2}$ (1 parameter)
$\mathbf{E x : ~} \mathrm{y}=\mathrm{c}_{1} e^{x}+c_{2} x e^{x}$ is a solution to $y^{\prime \prime}-2 y^{\prime}+y=0$ (2 parameter)

Geometrically, the general solution of a first order differential equation represents a family of curves know as solution curves, one for each assigned value of the arbitrary constant.

If $y=\frac{C}{x}$ is the general solution to $x y^{\prime}+y=0$ the solution curves would look like the following:

Solving differential equations analytically can be difficult or even impossible. However, there is a graphical approach you can use to learn a lot about the solution of a differential equation.

Consider a differential equation of the form $y^{\prime}=F(x, y)$ where $F(x, y)$ is some expression in x and y. At each point (x, y) in the $x-y$ plane where F is defined, the differential equation determines the slope $y=F(x, y)$ of the solution at that point. If you draw short line segments with slope $F(x, y)$ at selected points (x, y) in the domain of F, then these line segments for a slope field.

A slope field shows the general shape of all the solutions and can be helpful in getting a visual perspective of the solutions to a differential equation.

Initial Value Problems

We are often interested in problems in which we seek a solution $y(x)$ of a DE so that $y(x)$ satisfies prescribed conditions. This is called an initial-valued problem (IVP). The values of $y(x)$ at a single point $\left(x_{0}, y_{0}\right)$ are called initial conditions.
First Order IVP's
Solve: $\frac{d y}{d x}=f(x, y)$
Subject to: $y\left(x_{0}\right)=y_{0}$
Ex: If $y=c e^{x}$ is one parameter family of solutions of the simple 1st order $\mathbf{D E} y^{\prime}=y$. All solutions are defined on the interval $(-\infty, \infty)$. If we impose an initial condition $y(0)=3$, we can find a solution to the IVP.

If we place the initial condition $y(1)=-2$ we can find another solution.

2 major questions:

- Does a solution to the problem exist?
- If the solution exists, is it unique?

Picard's existence of a unique solution:

Let R be a rectangular region in the $\mathrm{x}-\mathrm{y}$ plane defined by $a \leq x \leq b, c \leq y \leq d$ that contains the point $\left(x_{0}, y_{0}\right)$ in its interior. If $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on R , then there exists an interval I centered at x_{0} and a unique function $y(x)$ defined on I satisfying the IVP.

EX: If $x=c_{1} \cos 4 t+c_{2} \sin 4 t$ is a two parameter family of solutions of $x^{\prime \prime}+16 x=0$. Find a solution of the IVP:

$$
x^{\prime \prime}+16 x=0, x\left(\frac{\pi}{2}\right)=-2, x^{\prime}\left(\frac{\pi}{2}\right)=1
$$

Separable Variables:

At this point you should have a strong background in integration of single and multivariable functions.

Solution by Integration:

Consider the first order differential equation

$$
\frac{d y}{d x}=f(x, y)
$$

When f is a single variable function of x then the differential equation becomes

$$
\frac{d y}{d x}=g(x)
$$

and can be solved by integration. If $g(x)$ is a continuous function, then integrating both sides gives us

$$
\begin{aligned}
& \int d y=\int g(x) d x \\
& y=G(x)+C
\end{aligned}
$$

where $\mathrm{G}(\mathrm{x})$ is an antiderivative of $g(x)$.
Ex: Solve the following first order separable DE
a. $\frac{d y}{d x}=1+x e^{2 x}$
b. $\frac{d y}{d x}=\sec x$

Separable Equation:
A first order differential equation of the form

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

is said to be separable or to have separable variables.

Separable: $\frac{d y}{d x}=y^{2} x e^{3 x+4 y}$ Non-separable: $\frac{d y}{d x}=y+\sin x$
Separable equations can be written as

$$
\begin{gathered}
\frac{d y}{d x}=\frac{g(x)}{h(y)} \\
o r \\
h(y) d y=g(x) d x
\end{gathered}
$$

we then integrate both sides to solve

$$
\begin{aligned}
\int h(y) d y & =\int g(x) d x \\
H(y) & =G(y)+C
\end{aligned}
$$

If we follow this procedure to solve separable variables a one-parameter family of solutions is obtained.

Ex. Solve the following first order DE:

a. $(1+x) d y-y d x=0$
b. $\frac{d y}{d x}=-\frac{x}{y}, y(4)=3$
c. $x e^{-y} \sin x d x-y d y=0$
d. $x y^{4} d x+\left(y^{2}+2\right) e^{-3 x} d y=0$

- Unless convenient leave in implicit form, however the interval over which the solution exists in not easy to see.
- Make sure when separating the variables, the divisors are not zero.

Ex: Solve: $\frac{d y}{d x}=y^{2}-4, y(0)=2$
Ex: Solve: $\left(e^{2 y}-y\right) \cos x \frac{d y}{d x}=e^{y} \sin 2 x, y(0)=0$

Homogeneous Equations:

Definition: If a function has the property that

$$
f(t x, t y)=t^{n} f(x, y)
$$

For some real number n, then \boldsymbol{f} is said to be a homogeneous function of degree \mathbf{n}.
Ex: Determine which of the following are homogeneous
a. $f(x, y)=x^{2}-3 x y+5 y^{2}$
b. $f(x, y)=\sqrt[3]{x^{2}+y^{2}}$
c. $f(x, y)=x^{3}+y^{3}+1$
d. $f(x, y)=\frac{x}{2 y}+4$

If $f(x, y)$ is a homogeneous function of degree n, notice that we can write

$$
f(x, y)=x^{n} f\left(1, \frac{y}{x}\right) \text { and } f(x, y)=y^{n} f\left(\frac{x}{y}, 1\right)
$$

where $f(1, y / x)$ and $f(x / y, 1)$ are both homogeneous of degree n .
Ex:
a. $f(x, y)=6 x y^{3}-x^{2} y^{2}$
b. $f(x, y)=x^{2}-y$
c. $f(x, y)=x^{2}+3 x y+y^{2}$

Definition: A differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be homogeneous if both coefficients M and N are homogeneous functions of the same degree.

Method of Solution:

A homogeneous D.E. can be solved by using either substitution $y=u x$ or $x=v y$, where u and v are new dependent variables to reduce the homogeneous D.E. into a separable first order D.E.

$$
\begin{gathered}
y=u x, \quad d y=u d x+x d u \\
M(x, y) d x+N(x, y) d y=0 \\
M(x, u x) d x+N(x, u x)(u d x+x d u)=0
\end{gathered}
$$

Since homogeneous

$$
\begin{aligned}
x^{n} M(1, u) d x+x^{n} N(1, u)(u d x+x d u) & =0 \\
{[M(1, u)+u N(1, u)] d x+x N(1, u) d u } & =0
\end{aligned}
$$

Which gives

$$
\frac{d x}{x}+\frac{N(1, u) d u}{M(1, u)+u N(1, u)}=0
$$

Ex: Solve the following:
a. $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$
b. $(2 \sqrt{x y}-y) d x-x d y=0$
c. $2 x^{3} y d x+\left(x^{4}+y^{4}\right) d y=0$
d. $x \frac{d y}{d x}=y+x e^{y / x}, y(1)=1$

Exact Equations:

Differential of a Function of Two Variables:

If $z=f(x, y)$ is a function of two variables with continuous first partial derivatives in a region R of the $x y$ - plane, then its differential is

$$
\begin{equation*}
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \tag{1}
\end{equation*}
$$

In the special case when $f(x, y)=c$, where c is a constant, then (1) implies

$$
\begin{equation*}
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=0 \tag{2}
\end{equation*}
$$

In other words, given the one parameter family of function $f(x, y)=c$, we can generate a first order DE by computing the differential of both sides of the equality. For example, if $x^{2}-5 x y+y^{3}=c$, then (2) gives the first order DE

$$
\begin{equation*}
(2 x-5 y) d x+\left(-5 x+3 y^{2}\right) d y=0 \text { or } \frac{d y}{d x}=\frac{5 y-2 x}{-5 x+3 y^{2}} \tag{3}
\end{equation*}
$$

Exact Equation: A differential expression

$$
M(x, y) d x+N(x, y) d y
$$

is an exact differential in a region \mathbf{R} of the $x y$-plane if it corresponds to the differential of some function $f(x, y)$ defined in \mathbf{R}. A first order DE of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be an exact differential equation if the expression on the left hand side is an exact differential.

Ex: $x^{2} y^{3} d x+x^{3} y^{2} d y=0$ is an exact differential equation, because its left-hand side is an exact differential:

$$
d\left(1 / 3 x^{3} y^{3}\right)=x^{2} y^{3} d x+x^{3} y^{2} d y
$$

The Criterion for an Exact Differential:

Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives in a rectangular region \mathbf{R} defined by $a<x<b, c<y<d$. Then a necessary and sufficient condition that

$$
M(x, y) d x+N(x, y) d y
$$

be an exact differential if

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{4}
\end{equation*}
$$

Method of Solution:

Given an equation in the differential form
$M(x, y) d x+N(x, y) d y=0$, determine whether the equality in (4) holds. If it does, then there exists a function f for which

$$
\frac{\partial f}{\partial x}=M(x, y)
$$

We can find f by integrating $M(x, y)$ with respect to x while holding y constant:

$$
\begin{equation*}
f(x, y)=\int M(x, y) d x+g(y) \tag{5}
\end{equation*}
$$

where the arbitrary function $g(y)$ is the "constant" of integration. Now differentiate (5) with respect to y and assume $\partial f / \partial y=N(x, y)$:

$$
\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} \int M(x, y) d x+g^{\prime}(y)=N(x, y)
$$

This gives

$$
\begin{equation*}
\left.g^{\prime}(y)=N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x\right) \tag{6}
\end{equation*}
$$

Finally integrate (6) with respect to y and substitute the result in (5). The implicit solution of the equation is

$$
f(x, y)=c
$$

It is important to realize the expression $\left.N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x\right)$ is independent of x, because

$$
\left.\frac{\partial}{\partial x}\left[N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x\right)\right]=\frac{\partial N}{\partial x}-\frac{\partial}{\partial y}\left(\frac{\partial}{\partial y} \int M(x, y) d x\right)=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=0
$$

Ex: Solve the following
a. $2 x y d x+\left(x^{2}-1\right) d y=0$
b. $\left(e^{2 y}-y \cos x y\right) d x+\left(2 x e^{2 y}-x \cos x y+2 y\right) d y=0$
c. $\frac{d y}{d x}=\frac{x y^{2}-\cos x \sin x}{y\left(1-x^{2}\right)}, y(0)=2$

Integrating Factors:

It is sometimes possible to convert a non-exact differential equation into an exact equation by multiplying by some function $\mu(x, y)$ called an integrating factor.
However, the resulting exact equation

$$
\mu M(x, y) d x+\mu N(x, y) d y=0
$$

May not be equivalent to the original in the sense that a solution of one is also the solution of the other. It is possible for a solution to be lost or gained as a result of the multiplication.
Ex: Solve $(x+y) d x+x \ln x d y=0$ using $\mu(x, y)=\frac{1}{x}$, on $(0, \infty)$.
The hard part is finding μ, one way is to use partial DE , we can't do that yet. Consider this, by the criterion $M(x, y) d x+N(x, y) d y=0$ will be exact iff $(\mu M)_{y}=(\mu N)_{x}$.

Using the product rule we get

$$
\mu_{x} N-\mu_{y} M=\left(M_{y}-N_{x}\right) \mu
$$

M, N, M_{y}, N_{x} are known functions of x and y. So another way is to assume u is a function of one variable. In this case we get the two scenarios:

$$
M(x, y) d x+N(x, y) d y=0
$$

- $\operatorname{If}\left(M_{y}-N_{x}\right) / N$ is a function of x alone, then an integrating factor is

$$
\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N}} d x
$$

- If $\left(N_{x}-M_{y}\right) / M$ is a function of y alone, then an integrating factor is

$$
\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M}} d y
$$

Ex: $x y d x+\left(2 x^{2}+3 y-20\right) d y=0$ (this is not exact)

Linear Equations:

A first order DE of the form

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

is said to be a linear equation in the dependent variable y.

Standard Form:

By dividing both sides of the previous equation by the lead coefficient we obtain the standard form:

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) \tag{2}
\end{equation*}
$$

We seek a solution, on I for which both coefficient functions \boldsymbol{P} and \boldsymbol{f} are continuous.

Integrating factor: with differentials we can write the standard form as

$$
d y+[P(x) y-f(x)] d x=0
$$

With linear equation you can have the property that you can always find a factor $\mu(x)$ such that

$$
\begin{equation*}
\mu(x) d y+\mu(x)[P(x) y-f(x)] d x=0 \tag{3}
\end{equation*}
$$

is an exact differential equation.
If it is exact then
or

$$
\frac{\partial}{\partial x} \mu(x)=\frac{\partial}{\partial y} \mu(x)[P(x)-f(x)]
$$

$$
\frac{d \mu}{d x}=\mu P(x)
$$

Looking a little closer this is a separable equation that we can use to find $\mu(x)$

$$
\begin{aligned}
\frac{d \mu}{\mu} & =P(x) d x \\
\ln |\mu| & =\int P(x) d x \\
\mu(x) & =e^{\int P(x) d x}
\end{aligned}
$$

We don't use a constant of integration because (3) is unaffected by a constant multiple.
If we use this integrating factor in (3) we get

$$
e^{\int P(x) d x} d y+e^{\int P(x) d x} P(x) y d x=e^{\int P(x) d x} f(x) d x
$$

rewrite as

$$
d\left[e^{\int P(x) d x} y\right]=e^{\int P(x) d x} f(x) d x
$$

then integrate

$$
e^{\int P(x) d x} y=\int e^{\int P(x) d x} f(x) d x+c
$$

or

$$
y=e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x+c e^{-\int P(x) d x}
$$

Solving a Linear First Order Equation:

1. Put a linear equation into the standard form
2. From the standard form identify $P(x)$ and then find the integrating factor $\mu(x)=e^{\int P(x) d x}$
3. Multiply the standard form of the equation by the integrating factor, the left hand side of the resulting equation is automatically the derivative of the integrating factor and y.

$$
\frac{d}{d x}\left[e^{\int P(x) d x}\right] y=e^{\int P(x) d x} f(x)
$$

4. Integrate both sides of this last equation.

Ex: Solve the following
a. $\frac{d y}{d x}-3 y=0$
b. $x \frac{d y}{d x}-4 y=x^{6} e^{x}$
c. $\left(x^{2}-9\right) \frac{d y}{d x}+x y=0$
d. $\frac{d y}{d x}+2 x y=x, y(0)=-3$
e. $x \frac{d y}{d x}+y=2 x, y(1)=0$
f. $\frac{d y}{d x}=\frac{1}{x+y^{2}}, y(-2)=0$

Equations of Bernoulli

Here we do not look at a particular type of DE but instead a specific equations that can be turned into DE we already know how to solve.

Bernoulli's Equation:

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

where n is any real number, notice that for $n=0$ and $n=1$ the equation is linear. (We already know how to solve that and we wouldn't use the proceeding method) If $y \neq 0$ we can write the equation as

$$
y^{-n} \frac{d y}{d x}+P(x) y^{1-n}=f(x)
$$

Let $w=y^{1-n}, n \neq 0, n \neq 1$ then

$$
\frac{d w}{d x}=(1-n) y^{-n} \frac{d y}{d x} \text { (use implicit diff where } y \text { is a function of } x \text {) substitute this }
$$ into the altered Bernoulli equation to produce a linear equation of the form:

$$
y^{-n}\left(y^{n} \frac{d w}{d x} \frac{1}{(1-n)}\right)+P(x) w=f(x)
$$

$$
\frac{d w}{d x}+(1-n) P(x) w=(1-n) f(x)
$$

solve this for w then use $w=y^{1-n}$ you get a solution to the Bernoulli equation.
Ex: Solve the following
a. $\frac{d y}{d x}+\frac{1}{x} y=x y^{2}$
b. $\frac{d y}{d x}+y=e^{x} y^{2}$
c. $x \frac{d y}{d x}-(1+x) y=x y^{2}$

Ricatti's Equation: the nonlinear differential equation

$$
\frac{d y}{d x}=P(x)+Q(x) y+R(x) y^{2}
$$

if y_{1} is a known particular solution of the Ricatti Equation then the substitutions

$$
y=y_{1}+u \text { and } \frac{d y}{d x}=\frac{d y_{1}}{d x}+\frac{d u}{d x}
$$

into the Ricatti Equation leads to

$$
\frac{d y_{1}}{d x}-P(x)-Q(x)\left(y_{1}+u\right)+R(x)\left(y_{1}+u\right)^{2}
$$

then since

$$
\begin{array}{r}
\frac{d y_{1}}{d x}-P(x)-Q(x) y_{1}-R(x) y_{1}^{2}=0 \\
\frac{d u}{d x}-\left(q+2 y_{1} R\right) u=R u^{2}
\end{array}
$$

this is actually now a Bernoulli equation with $\mathrm{n}=2$, it can then be reduced to the linear equation

$$
\frac{d w}{d x}+\left(q+2 y_{1} R\right) w=-R
$$

by substituting $w=u^{-1}$
Ex: Solve $\frac{d y}{d x}=2-2 x y+y^{2}$

