Completing the Square

Say we have a simple expression like $x^{2}+b x$. Having x twice in the same expression can make life hard. What can we do?

Well, with a little inspiration from Geometry we can convert it, like this:

As you can see $x^{2}+b x$ can be rearranged nearly into a square ...
\ldots and we can complete the square with $(b / 2)^{2}$
In Algebra it looks like this:

$$
\begin{array}{cc}
x^{2}+b x & +(b / 2)^{2}=(x+b / 2)^{2} \\
\text { "Complete } \\
\text { the } \\
\text { Square" }
\end{array}
$$

So, by adding $(b / 2)^{2}$ we can complete the square.
And $(x+b / 2)^{2}$ has x only once, which is easier to use.

Keeping the Balance

Now ... you can't just add $(b / 2)^{2}$ without also subtracting it too! Otherwise the whole value would change.

So I will show you how to do it properly with an example:

Start with: $\quad x^{2}+6 x+7$

Also subtract the new term
Simplify it and we are done.

$$
\underbrace{x^{2}+6 x+\left(\frac{6}{2}\right)^{2}}_{\left(x+\frac{6}{2}\right)^{2}}+\underbrace{7-\left(\frac{6}{2}\right)^{2}}_{7-9}=(x+3)^{2}-2
$$

The result:

$$
x^{2}+6 x+7=(x+3)^{2}-2
$$

