Calc 2 Bonus Review Test #1

Find the volume of the solid generated by revolving the region bounded by the given lines and curves about the x-axis. 1. $y = \sqrt{x}$, y = 0, x = 0, x = 7

2.
$$y = \frac{1}{x}$$
, $y = 0$, $x = 1$, $x = 2$
3. $y = x^2$, $y = 16$, $x = 0$
4. $y = 6x$, $y = 6$, $x = 0$

Find the volume of the solid generated by revolving the region about the given line.

5. The region bounded above by the line y = 9, below by the curve $y = 9 - x^2$, and on the right by the line x = 3, about the line y = 9

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves about the given lines.

6.
$$y = 9 - x^2$$
, $y = 9$, $x = 3$; revolve about the line $y = 9$

Find the length of the curve.

7.
$$y = 4x^{3/2}$$
 from $x = 0$ to $x = \frac{5}{16}$

Find the derivative of y with respect to x, t, or θ , as appropriate.

8. $y = \ln(\ln 6x)$

9.
$$y = \ln \frac{1-x}{(x+3)^3}$$

Find the derivative of y with respect to x, t, or θ , as appropriate.

10. $y = 9xe^{x} - 9e^{x}$

Evaluate the integral.

11.
$$\int_{2}^{3} \frac{x^4 + 1}{x^5 + 5x} \, dx$$

$$12. \int \frac{\cos x \, dx}{1+3 \sin x}$$

Find the derivative of **y** with respect to **x**.

13.
$$y = -\sin^{-1}(7x^2 + 2)$$

Evaluate the integral.

14.
$$\int \frac{8 - 4x}{\sqrt{49 - 64x^2}} dx$$

15. $\int \frac{dx}{2\sqrt{x}(1 + x)}$

16.
$$\int \frac{dt}{t^2 + 10t + 29}$$

Answer Key Testname: TEST #1 BONUS REVIEW

1. $\frac{49}{2}\pi$ **2.** $\frac{1}{2}\pi$ **3.** $\frac{4096}{5}\pi$ **4.** 24π **5.** $\frac{243}{5}\pi$ **6.** $\frac{243}{5}\pi$ 7. $\frac{335}{432}$ $8. \frac{1}{x \ln 6x}$ 9. $\frac{2x-6}{(x+3)(1-x)}$ **10.** 9xe^x **11.** $\frac{1}{5} \ln \left| \frac{43}{7} \right|$ **12.** $\frac{1}{3} \ln |1 + 3 \sin x| + C$ 13. $\frac{-14x}{\sqrt{1-(7x^2+2)^2}}$ $\sqrt{1 - (7x^{-} + 2)^{2}}$ **14.** $\sin^{-1}\left(\frac{8}{7}x\right) + \frac{1}{16}\sqrt{49 - 64x^{2}} + C$ **15.** $\tan^{-1}\sqrt{x} + C$ **16.** $\frac{1}{2}\tan^{-1}\left(\frac{t+5}{2}\right) + C$