Antiderivatives and The Integral

Antiderivatives

Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives.

Another important question in calculus is given a derivative find the function that it came from. This is the process known as integration.

Definition of an Antiderivative:
A function \(F \) is an antiderivative of \(f \) on an interval \(I \) if \(F'(x) = f(x) \) for all \(x \) in \(I \).

Representation of Antiderivatives:
If \(F \) is an antiderivative of \(f \) on an interval \(I \), then \(G \) is an antiderivative of \(f \) on the interval \(I \) if and only if \(G \) is of the form \(G(x) = F(x) + C \), for all \(x \) in \(I \) where \(C \) is a constant.

\[G(x) = F(x) + C \]

is called a family of antiderivatives or general antiderivative.

\(C \) is called the constant of integration
\(G \) is also know as the solution to the differential equation
A differential equation in \(x \) and \(y \) is an equation that involves \(x \), \(y \), and derivatives of \(y \).

Ex: Find the general solution of the differential equation \(y' = 2 \)

Notation for Antiderivatives
The process of finding antiderivatives is called antidifferentiation or indefinite integration and is denoted by an integral sign: \(\int \)

So from \(\frac{dy}{dx} = f(x) \) \(\Rightarrow \) \(dy = f(x)dx \)

using integration on both sides of the equation

\[\int dy = \int f(x)dx = F(x) + C \]

this is the indefinite integral

Since integration is the reverse of differentiation we can check the previous by \(\frac{d}{dx}[F(x) + C] = f(x) \)

If you know your derivative rules then learning your integration rules should be very easy! Just work backwards.
Basic Integration Rules:

<table>
<thead>
<tr>
<th>Differentiation Formula</th>
<th>Integration Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{d}{dx}[C] = 0)</td>
<td>(\int 0 , dx = C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[kx] = k)</td>
<td>(\int k , dx = kx + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[kf'(x)] = kf''(x))</td>
<td>(\int kf'(x) , dx = k \int f'(x) , dx)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x))</td>
<td>(\int [f(x) \pm g(x)] , dx = \int f(x) , dx \pm \int g(x) , dx)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[x^n] = nx^{n-1})</td>
<td>(\int x^n , dx = \frac{x^{n+1}}{n+1} + C \quad n \neq -1)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\sin x] = \cos x)</td>
<td>(\int \cos x , dx = \sin x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\cos x] = -\sin x)</td>
<td>(\int \sin x , dx = -\cos x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\tan x] = \sec^2 x)</td>
<td>(\int \sec^2 x , dx = \tan x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\sec x] = \sec x \tan x)</td>
<td>(\int \sec x \tan x , dx = \sec x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\cot x] = -\csc^2 x)</td>
<td>(\int \csc^2 x , dx = -\cot x + C)</td>
</tr>
<tr>
<td>(\frac{d}{dx}[\csc x] = -\csc x \cot x)</td>
<td>(\int \csc x \cot x , dx = -\csc x + C)</td>
</tr>
</tbody>
</table>

Ex:

a. \(\int 3x \, dx \)
 b. \(\int \frac{1}{x^3} \, dx \)
 c. \(\int \sqrt{x} \, dx \)
 d. \(\int 2 \sin x \, dx \)
 e. \(\int \, dx \)
 f. \(\int (x + 2) \, dx \)
 g. \(\int 3x^4 - 5x^2 + x \, dx \)
 h. \(\int \frac{x+1}{\sqrt{x}} \, dx \)
 i. \(\int \frac{\sin x}{\cos^2 x} \, dx \)
Area:
Objective: Use sigma notation to write and evaluate a sum. Understand the concept of area. Approximate the area of a plane region. Find the area of a plane region using limits.

Sigma Notation:
The sum of \(n \) terms \(a_1, a_2, a_3, \ldots, a_n \) is written as
\[
\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \ldots + a_n
\]
where \(i \) is the index of summation, \(a_i \) is the \(i \)th term of the sum, and the upper and lower bounds of summation are \(n \) and \(1 \).

Ex: a. \(\sum_{i=1}^{6} i \)
b. \(\sum_{k=1}^{n} \frac{1}{n} (k^2 + 1) \)
c. \(\sum_{i=1}^{n} f(x_i) \Delta x \)

Properties of Summations:
1. \(\sum_{i=1}^{n} ka_i = k \sum_{i=1}^{n} a_i \)
2. \(\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i \)

Summation Formulas:
1. \(\sum_{i=1}^{n} c = cn \)
2. \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)
3. \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \)
4. \(\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \)

Ex: Evaluate \(\sum_{i=1}^{n} \frac{i + 1}{n^2} \) for \(n = 10, 100, 1000, 10000 \)

Area of a Plane Region
Use five rectangles to find two approximations of the area of the region lying between the graph of \(f(x) = x^2 \) and the \(x \)-axis between \(x = 0 \) and \(x = 2 \).

Rectangles outside the curve are called circumscribed rectangles and the sum of the areas is called the upper sum.
Rectangles inside the curve are called **inscribed rectangles** and the sum of the areas is called the **lower sum**.

For any region under a curve \(f \) bounded by the **x-axis** between \(x = a \) and \(x = b \).

\[1 \] The left end of the rectangle touches the curve \(= \sum_{i=1}^{n} f(m_i) \Delta x \)

\[2 \] The right end of the rectangle touches the curve \(= \sum_{i=1}^{n} f(M_i) \Delta x \)

where

- \(\Delta x = \frac{b-a}{n} \), \(n \) is the number of subintervals
- \(f(m_i) = f(a + (i - 1) \Delta x) \)
- \(f(M_i) = f(a + i \Delta x) \)

if the function in increasing or decreasing will change whether (1) or (2) are upper or lower sums

\(f(m_i) \) is an upper sum if \(f \) is decreasing and a lower if \(f \) is increasing

\(f(M_i) \) is a lower sum if \(f \) is decreasing and an upper if \(f \) is increasing

<table>
<thead>
<tr>
<th>Limits of the Lower and Upper Sums:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of the Area of a Region in the Plane:</td>
</tr>
<tr>
<td>Let (f) be continuous and nonnegative on the interval ([a,b]). The limits as (n \to \infty) of both the lower and upper sums exists and are equal to each other.</td>
</tr>
</tbody>
</table>

| **Ex:** Find the area of the region bounded by the graph \(f(x) = x^3 \), the **x–axis**, and the vertical lines \(x = 0 \) and \(x = 1 \). |
Riemann Sums and Definite Integrals

Objective: Understand the definition of a Riemann sum. Evaluate a definite integral using limits. Evaluate a definite integral using properties of definite integrals.

Definition of Riemann Sum:
Let f be defined on the closed interval $[a,b]$, and let Δ be a partition of $[a,b]$ given by

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

where Δx_i is the width of the ith subinterval. If c_i is any point in the ith subinterval, then the sum

$$\sum_{i=1}^{n} f(c_i) \Delta x_i, \quad x_{i-1} < c_i < x_i$$

is called the **Riemann Sum** of f for the partition Δ.

Definition of a Definite Integral:
If f is defined on the closed interval $[a,b]$ and the limit

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

exists, then f is integrable on $[a,b]$ and the limit is denoted by

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i = \int_{a}^{b} f(x) \, dx$$

The limit is called the definite integral of f from a to b. The number a is the **lower limit** of integration and the number b in the **upper limit** of integration.

Notice the similarities between the definite integral and the indefinite integral. Even though they are similar, there is a major difference: the definite integral results in a number, and the indefinite integral results in a family of functions.

Ex: Evaluate the definite integral $\int_{-2}^{1} 2x \, dx$ remember $x_i = \Delta x = \frac{b-a}{n}$ and $c_i = a + i(\Delta x)$

Continuity Implies Integrability:
If a function f is continuous on the closed interval $[a,b]$, then f is integrable on $[a,b]$.
The Definite Integral as the Area of a Region:
If f is continuous and nonnegative on the closed interval $[a,b]$, then the area of the region bounded by the graph of f, the x-axis, and the vertical lines $x = a$ and $x = b$ is given by

$$\text{Area} = \int_a^b f(x) \, dx$$

Ex: Sketch the region corresponding to the definite integral: $\int_1^4 dx$

Definitions of Two Special Integrals:
1. If f if defined at $x = a$, then we define $\int_a^a f(x) \, dx = 0$
2. If f is integrable on $[a,b]$, then we define $\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx$

Additive Interval Property:
If f is integrable on the three closed intervals $[a,c],[c,b]$, and $[a,b]$ then,

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Properties of Definite Integrals:
If f and g are integrable on $[a,b]$ and k is constant, then the functions of kf and $f \pm g$ are integrable on $[a,b]$, and

1. $\int_a^b kf(x) \, dx = k \int_a^b f(x) \, dx$
2. $\int_a^b [f(x) \pm g(x)] \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx$

The Fundamental Theorem of Calculus
Objective: Evaluate a definite integral using the Fundamental Theorem of Calculus. Understand and use the Mean Value Theorem for Integrals. Find the average value of a function over a closed interval. Understand and use the Second Fundamental Theorem of Calculus.

We have looked at two major branches of calculus: differential calc (tangent line problem) and integral calc. (area problem). Even though the two seem unrelated there is a connection called the Fundamental Theorem of Calculus.

If a function f is continuous on the closed interval $[a,b]$ and F is an antiderivative of f on the interval $[a,b]$, then

$$\int_a^b f(x) \, dx = F(b) - F(a)$$
Using the Fundamental Theorem of Calculus

1. Provided you can find an antiderivative of f, you now have a way to evaluate a definite integral without having to use the limit of sum.

2. When applying the fundamental Theorem of Calculus, the following notation is convenient.

$$\int_{a}^{b} f(x)dx = F(x)\bigg|_{a}^{b} = F(b) - F(a)$$

3. It is not necessary to include a constant of integration C in the antiderivative because

$$\int_{a}^{b} f(x)dx = [F(x) + C]_{a}^{b}$$

$$= [F(b) + C] - [F(a) + C]$$

$$= F(b) - F(a)$$

Ex: Evaluate each definite integral

a. $\int_{1}^{2} (x^2 - 3)dx$

b. $\int_{1}^{4} \sqrt{x}dx$

c. $\int_{0}^{\pi/4} \sec^2 x dx$

d. $\int_{0}^{2} |2x - 1| dx$

Ex: Find the area of the region bounded by the graph of $y = 2x^2 - 3x + 2$, the x-axis, and the vertical lines $x = 0$ and $x = 2$.

The Second Fundamental Theorem of Calculus:

If f is continuous on an open interval I containing a, then, for every x in the interval,

$$\frac{d}{dx} \left[\int_{a}^{x} f(t)dt \right] = f(x)$$

Ex: Evaluate $\frac{d}{dx} \int_{0}^{x} \cos t dt$

Integration by Substitution

Objective: Use pattern recognition to find an indefinite integral. Use a change of variables to find an indefinite integral. Use the General Power Rule for Integration to find an indefinite integral. Use a change of variables to evaluate a definite integral. Evaluate a definite integral involving an even or odd function

Pattern Recognition:

We will look at integrating composition functions in two ways pattern recognition and change of variables.

Remember the Chain Rule: $\frac{d}{dx} [f(g(x))] = f'(g(x))g'(x)$
Anti-differentiation of a Composite Function:
Let g be a function whose range is an interval I, and let f be a function that is continuous on I, If g is differentiable on its domain and F is an antiderivative of f on I, then

$$\int f(g(x))g'(x)dx = F(g(x)) + C$$

If $u = g(x)$ then $du = g'(x)dx$ and

$$\int f(u)du = F(u) + C$$

Recognize the patterns that the following fit $f(g(x))g'(x)$

Ex:
- a. $\int 2x(x^2 + 1)^4 dx$
- b. $\int 3x^2\sqrt{x^3 + 1}dx$
- c. $\int \sec^2 x(tan x + 3)dx$
- d. $\int (x^2 + 1)^2 2xdx$
- e. $\int 5\cos 5xdx$
- f. $\int x(x^2 + 1)^2 dx$

Making a Change of Variables
1. Choose a substitution $u = g(x)$. Usually, it is best to choose the inner part of a composite function, such as a quantity raised to a power.
2. Compute $du = g'(x)dx$
3. Rewrite the integral on terms of the variable u.
4. Find the resulting integral in terms of u.
5. Replace u by $g(x)$ to obtain an antiderivative in terms of x.
6. Check your answer by differentiating.

Ex:
- a. $\int \sqrt{2x - 1}dx$
- b. $\int x\sqrt{2x - 1}dx$
- c. $\int \sin^2 3x \cos 3xdx$

General Power Rule for Integration:
If g is a differentiable function of x, then

$$\int [g(x)]^n g'(x)dx = \frac{[g(x)]^{n+1}}{n+1} + C, \quad n \neq -1$$

Equivalently, if $u = g(x)$, then

$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

Ex:
- a. $\int 3(3x - 1)^4 dx$
- b. $\int (2x + 1)(x^2 + x)dx$
- c. $\int 3x^2\sqrt{x^3 - 2}dx$
- d. $\int \frac{-4x}{(1-2x^2)^2}dx$
- e. $\int \cos^2 x \sin x dx$
Change of Variables for Definite Integrals

If the function $u = g(x)$ has a continuous derivative on the closed interval $[a,b]$ and f is continuous on the range of g, then

$$
\int_{a}^{b} f(g(x))g'(x)\,dx = \int_{g(a)}^{g(b)} f(u)\,du
$$

Ex:

a. $\int_{0}^{1} x(x^2 + 1)^3\,dx$

b. $\int_{1}^{5} \frac{x}{\sqrt{2x-1}}\,dx$