Antiderivatives and The Integral

Antiderivatives

Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives.
Another important question in calculus is given a derivative find the function that it came from. This is the process known as integration.

Definition of an Antiderivative:

A function \mathbf{F} is an antiderivative of \boldsymbol{f} on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Representation of Antiderivatives:

If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form $\mathbf{G}(\mathbf{x})=\mathbf{F}(\mathbf{x})+\mathbf{C}$, for all \mathbf{x} in I where C is a constant.
$\mathbf{G}(\mathbf{x})=\mathbf{F}(\mathbf{x})+\mathbf{C}$ is called a family of antiderivatives or general antiderivative.
C is called the constant of integration
\mathbf{G} is also know as the solution to the differential equation
A differential equation in x and y is an equation that involves x, y, and derivatives of y.
Ex: Find the general solution of the differential equation $y^{\prime}=2$

Notation for Antiderivatives

The process of finding antiderivatives is called antidifferentiation or indefinite integration and is denoted by an integral sign: \int
So from $\quad \frac{d y}{d x}=f(x) \Rightarrow d y=f(x) d x$
using integration on both sides of the equation

$$
\int d y=\int f(x) d x=F(x)+C
$$

this is the indefinite integral
Since integration is the reverse of differentiation we can check the previous by $\frac{d}{d x}[F(x)+C]=f(x)$

If you know your derivative rules then learning your integration rules should be very easy! Just work backwards.

Basic Integration Rules:

Differentiation Formula	Integration Formula
$\frac{d}{d x}[C]=0$	$\int 0 d x=C$
$\frac{d}{d x}[k x]=k$	$\int k d x=k x+C$
$\frac{d}{d x}[k f(x)]=k f^{\prime}(x)$	$\int k f(x) d x=k \int f(x) d x$
$\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)$	$\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$
$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad n \neq-1$
$\frac{d}{d x} \sin x=\cos x d x=\sin x+C$	
$\frac{d}{d x} \cos x=-\sin x$	$\int \sin x d x=-\cos x+C$
$\frac{d}{d x} \tan x=\sec { }^{2} x$	$\int \sec { }^{2} x d x=\tan x+C$
$\frac{d}{d x} \sec x=\sec x \tan x$	$\int \sec x \tan x d x=\sec x+C$
$\frac{d}{d x} \cot x=-\csc { }^{2} x$	$\int \csc ^{2} x d x=-\cot x+C$
$\frac{d}{d x} \csc x=-\csc x \cot x$	$\int \csc ^{d} x \cot x d x=-\csc x+C$

Ex: a. $\int 3 x d x$
b. $\int \frac{1}{x^{3}}$
c. $\int \sqrt{x} d x$
d. $\int 2 \sin x d x$
e. $\int d x$
f. $\int(x+2) d x$
g. $\left.\int 3 x^{4}-5 x^{2}+x\right) d x$
h. $\int \frac{x+1}{\sqrt{x}} d x$
i. $\int \frac{\sin x}{\cos ^{2} x} d x$

Area:

Objective: Use sigma notation to write and evaluate a sum. Understand the concept of area. Approximate the area of a plane region. Find the area of a plane region using limits.

Sigma Notation:

The sum of n terms $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is written as

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

where i is the index of summation, a_{i} is the ith term of the sum, and the upper and lower bounds of summation are n and 1.
Ex: a. $\sum_{i=1}^{6} i$
b. $\sum_{k=1}^{n} \frac{1}{n}\left(k^{2}+1\right)$
c. $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$

Properties of Summations:

1. $\sum_{i=1}^{n} k a_{i}=k \sum_{i=1}^{n} a_{i} \quad$ 2. $\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}$

Summation Formulas:

1. $\sum^{n} c=c n$
$i=1$
2. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
3. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
4. $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$

Ex: Evaluate $\sum_{i=1}^{n} \frac{\boldsymbol{i}+\mathbf{1}}{\boldsymbol{n}^{2}}$ for $\mathrm{n}=10,100,1000,10000$

Area of a Plane Region

Use five rectangles to find two approximations of the area of the region lying between the graph of $f(x)=x^{2}$ and the \mathbf{x}-axis between $\mathbf{x}=\mathbf{0}$ and $x=2$.

Rectangles outside the curve are called circumscribed rectangles and the sum of the areas is called the upper sum.

Rectangles inside the curve are called inscribed rectangles and the sum of the areas is called the lower sum.

For any region under a curve f bounded by the \mathbf{x}-axis between $\mathbf{x}=\mathbf{a}$ and $\mathbf{x}=\mathbf{b}$.
(1) The left end of the rectangle touches the curve $=\sum_{i=1}^{n} f\left(m_{i}\right) \Delta x$
(2) The right end of the rectangle touches the curve $=\sum_{i=1}^{n} f\left(M_{i}\right) \Delta x$ where

- $\Delta x=\frac{b-a}{n}, \mathrm{n}$ is the number of subintervals
- $\boldsymbol{f}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)=f(a+(i-1) \Delta x)$
- $\boldsymbol{f}\left(M_{i}\right)=f(a+(i) \Delta x)$
if the function in increasing or decreasing will change whether (1) or (2) are upper or lower sums
$f\left(m_{i}\right)$ is an upper sum iff is decreasing and a lower iff is increasing $f\left(M_{i}\right)$ is a lower sum iff is decreasing and an upper iff is increasing

Limits of the Lower and Upper Sums:

Let f be continuous and nonnegative on the interval $[a, b]$. The limits as $\mathrm{n} \rightarrow \infty$ of both the lower and upper sums exists and are equal to each other.

Definition of the Area of a Region in the Plane:

Let f be continuous and nonnegative on the interval $[a, b]$. The area of the region bounded by the graph of f, the x-axis, and the vertical lines $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ is

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x, \quad x_{i-1}<c_{i}<x_{i}
$$

let $c_{i}=a+i \Delta x$
Ex: Find the area of the region bounded by the graph $f(x)=x^{3}$, the \mathbf{x}-axis, and the vertical lines $\mathbf{x}=\mathbf{0}$ and $\mathbf{x}=\mathbf{1}$.

Definition of Riemann Sum:

Let f be defined on the closed interval $[\mathrm{a}, \mathrm{b}]$, and let Δ be a partition of [a,b] given by

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b
$$

where Δx_{i} is the width of the i th subinterval. If c_{i} is any point in the i th subinterval, then the sum

$$
\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}, \quad x_{i-1}<c_{i}<x_{i}
$$

is called the Riemann Sum of f for the partition Δ

Definition of a Definite Integral:

If f is defined on the closed interval $[a, b]$ and the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

exists, then f is integrable on [a,b] and the limit is denoted by

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x
$$

The limit is called the definite integral of f from a to b. The number a is the lower limit of integration and the number b in the upper limit of integration.

Notice the similarities between the definite integral and the indefinite integral. Even though they are similar there is a major difference the definite integral results in a number and the indefinite integral results in a family of functions.
Ex: Evaluate the definite integral $\int_{-2}^{1} 2 x d x$ remember $x_{i}=\Delta x=\frac{b-a}{n}$ and

$$
c_{i}=a+i(\Delta x)
$$

Continuity Implies Integrability:

If a function f is continuous on the closed interval $[a, b]$, then f is integrable on $[a, b]$.

The Definite Integral as the Area of a Region:

If f is continuous and nonnegative on the closed interval [a,b], then the area of the region bounded by the graph of f, the x-axis, and the vertical lines $x=a$ and $x=b$ is given by

$$
\text { Area }=\int_{a}^{b} f(x) d x
$$

Ex: Sketch the region corresponding to the definite integral: $\int_{1}^{3} 4 d x$

Definitions of Two Special Integrals:

1. If f if defined at $x=a$, then we define $\int_{a}^{a} f(x) d x=\mathbf{0}$
2. If f is integrable on $[a, b]$, then we define

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

Additive Interval Property:

If f is integrable on the three closed intervals $[\mathrm{a}, \mathrm{c}],[\mathrm{c}, \mathrm{b}]$, and $[\mathrm{a}, \mathrm{b}]$ then, $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

Properties of Definite Integrals:

If f and g are integrable on $[\mathrm{a}, \mathrm{b}]$ and k is constant, then the functions of $k f$ and $f \pm g$ are integrable on [a,b], and

1. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
2. $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

The Fundamental Theorem of Calculus

Objective: Evaluate a definite integral using the Fundamental Theorem of Calculus. Understand and use the Mean
Value Theorem for Integrals. Find the average value of a function over a closed interval. Understand and use the Second Fundamental Theorem of Calculus.

We have looked at two major branches of calculus: differential calc (tangent line problem) and integral calc. (area problem). Even though the two seem unrelated there is a connection called the Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval $[a, b]$ and F is an antiderivative of f on the interval $[\mathrm{a}, \mathrm{b}]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Using the Fundamental Theorem of Calculus

1. Provided you can find an antiderivative of f, you now have a way to evaluate a definite integral without having to use the limit of sum.
2. When applying the fundamental Theorem of Calculus, the following notation is convenient.

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)
$$

3. It is not necessary to include a constant of integration C in the antiderivative because

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & {[F(x)+C]_{a}^{b} } \\
& =[F(b)+C]-[F(a)+C] \\
& =F(b)-F(a)
\end{aligned}
$$

Ex: Evaluate each definite integral
a. $\int_{1}^{2}\left(x^{2}-3\right) d x$
b. $\int_{1}^{4} \sqrt{x} d x$
c. $\int_{0}^{\pi / 4} \sec ^{2} x d x$
d. $\int_{0}^{2}|2 x-1| d x$

Ex: Find the area of the region bounded by the graph of $y=2 x^{2}-3 x+2$, the x-axis, and the vertical lines $x=0$ and $x=2$.

The Second Fundamental Theorem of Calculus:

If f is continuous on an open interval I containing a, then, for every x in the interval,

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

Ex: Evaluate $\frac{d}{d x} \int_{0}^{x} \cos t d t$

Integration by Substitution

Objective: Use pattern recognition to find an indefinite integral. Use a change of variables to find an indefinite integral. Use the General Power Rule for Integration to find an indefinite integral. Use a change of variables to evaluate a definite integral. Evaluate a definite integral involving an even or odd function

Pattern Recognition:

We will look at integrating composition functions in two ways pattern recognition and change of variables.
Remember the Chain Rule: $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$

Anti-differentiation of a Composite Function:

Let g be a function whose range is an interval I, and let f be a function that is continuous on I , If g is differentiable on its domain and F is an antiderivative of f on I, then

$$
\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C
$$

If $u=g(x)$ then $d u=g^{\prime}(x) d x$ and

$$
\int f(u) d u=F(u)+C
$$

Recognize the patterns that the following fit $f(g(x)) g^{\prime}(x)$
Ex: a. $\int 2 x\left(x^{2}+1\right)^{4} d x$
b. $\int 3 x^{2} \sqrt{x^{3}+1} d x$
c. $\int \sec ^{2} x(\tan x+3) d x$
d. $\int\left(x^{2}+1\right)^{2} 2 x d x$
e. $\int 5 \cos 5 x d x$
f. $\int x\left(x^{2}+1\right)^{2} d x$

Making a Change of Variables

1. Choose a substitution $u=g(x)$. Usually, it is best to choose the inner part of a composite function, such as a quantity raised to a power.
2. Compute $d u=g^{\prime}(x) d x$
3. Rewrite the integral on terms of the variable u.
4. Find the resulting integral in terms of u.
5. Replace u by $g(x)$ to obtain an antiderivative in terms of x.
6. Check your answer by differentiating.
Ex:
a. $\int \sqrt{2 x-1} d x$
b. $\int x \sqrt{2 x-1} d x$
c. $\int \sin ^{2} 3 x \cos 3 x d x$

General Power Rule for Integration:

If g is a differentiable function of x, then

$$
\int[g(x)]^{n} g^{\prime}(x) d x=\frac{[g(x)]^{n+1}}{n+1}+C, \quad n \neq-1
$$

Equivalently, if $u=g(x)$, then

$$
\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, \quad n \neq-1
$$

Ex:
a. $\int 3(3 x-1)^{4} d x$
b. $\int(2 x+1)\left(x^{2}+x\right) d x$
c. $\int 3 x^{2} \sqrt{x^{3}-2} d x$
d. $\int \frac{-4 x}{\left(1-2 x^{2}\right)^{2}} d x$
e. $\int \cos ^{2} x \sin x d x$

Change of Variables for Definite Integrals
If the function $u=g(x)$ has a continuous derivative on the closed interval $[a, b]$ and f is continuous on the range of g, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Ex: a. $\int_{0}^{1} x\left(x^{2}+1\right)^{3} d x$
b. $\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x$

